
ELEX 3330 : Programmable Logic Devices
2016 Winter Term

RTL Design with VHDL

is chapter covers an approach to logic design called Register Transfer Level (RTL) design. is is the method used for the
design of complex logic circuits such as microprocessors.
You should be able to:
identify the registers and logic/arithmetic functions required to implement a particular algorithm; partition this algorithm
into a sequence of these operations and register transfers; write synthesizeable VHDL RTL code to implement the algorithm.

Design Strategies

ere are a number of strategies that are useful when
designing complex logic circuits. You may recognize
similar strategies that are used in computer program-
ming.

One strategy is to design at the most abstract
(“highest”) level possible with the tools available. For
example, using a behavioral design style with VHDL
instead of a structural style (e.g. schematics) will
make it easier to write, read, document, and debug
your design.

Another design strategy is hierarchical decompo-
sition. e device being designed should be de-
composed into a number of modules (represented as
VHDL entities) that interface through well-defined
interfaces (VHDL ports). e internal structure of
these modules should not be visible from outside the
module. Each of these modules should then be fur-
ther subdivided into other modules. e decomposi-
tion process should be repeated until the remaining
modules are simple enough to be easily written and
tested. is decomposition makes it easy to test the
modules individually, allows modules to be re-used
and allowsmore than one person towork on the same
project at the same time.

It’s also a good idea to keep the design as portable as
possible. Avoid using language features that are spe-
cific to a particularmanufacturer or target technology
unless they are necessary tomeet other requirements.
is will make it possible to use differentmanufactur-
ing processes and different devices with a minimum
of redesign.

Structural Design

Structural design is the oldest digital logic design
method. In this method the designer does all the
work. e designer selects the low-level components
anddecides exactly how they are to be connected. e
parity generator described previously is an example of
structural design.

A structural design can be represented as a parts
list and a list of the connections between the pins on
the components (for example: “pin 12 on chip 3 is
connected to pin 5 on chip 7”). is representation
of a circuit is called a netlist.

Schematic capture is the most common structural
design method. e designer works with a program
similar to a drawing program that allows components
to be inserted into the design and connected to other
components.

Exercise 1: What would be the most common type of state-

ment in a structural VHDL description?

Behavioral Design

A behavioral design is meant to demonstrate the be-
haviour of a device without necessarily including de-
tails of the implementation.

If the behavioural description is written in a certain
style it may be possible for a program called a logic
synthesizer to map it to a hardware implementation.

In other cases the behavioral description may not
be sythesizable and is used only used to verify other
steps of the design process.

Exercise 2: A VHDL description contains non-synthesizeable

constructs such as propagation delays. Is it a behavioural or

structural description?

lec6.tex 1 2016-05-10 10:42

RTL Design

Register Transfer Level, or RTL1 design lies between
a purely behavioral description of the desired circuit
and a purely structural one. An RTL description de-
scribes a circuit’s registers and the sequence of trans-
fers between these registers but does not describe the
hardware used to carry out these operations.

e steps in RTL design are: (1) determine the
number and sizes of registers needed to hold the
data used by the device, (2) determine the logic and
arithmetic operations that need to be performed on
these register contents, and (3) design a statemachine
whose outputs control how the register contents are
updated in order to obtain the desired results.

Producing an RTL design is similar to writing a
computer program in a conventional programming
language. Choosing registers is the same as choos-
ing variables. Designing the flow of data in the “dat-
apath” is analogous to writing expressions involv-
ing the variables (registers) and operators (combina-
tional functions). Designing the controller state ma-
chine is similar to deciding on the flow of control
within the program (if/then/else, while-loops, etc).

As a simple example, consider a device that needs
to add four numbers. In VHDL, given signals of the
correct type, we can simply write:

s <= ((a + b) + c) + d ;

is particular description is simple enough that
it can be synthesized. However, the resulting circuit
will be a fairly large combinational circuit comprising
three adder circuits as follows:

1e “L” in RTL sometimes stands for “Language” or “Logic”
– all refer to the samemethod of designing complex logic circuits.

A behavioral description, not being concerned
with implementation details, would be complete at
this point.

However, if we were concerned about the cost of
the implementation we might decide to break down
the computation into a sequence of steps, each one
involving only a single addition:

s = 0
s = s + a
s = s + b
s = s + c
s = s + d

where each operation is executed sequentially. e
logic required is now one adder, a register to hold the
value of s in-between operations, a multiplexer to se-
lect the input to be added, and a circuit to clear s at
the start of the computation.

Although this approach only needs one adder, the
process requires more steps and will take longer. Cir-
cuits that divide up a computation into a sequence
of arithmetic and logic operations are quite common
and this type of design is called Register Transfer
Level (RTL) or “dataflow” design.

An RTL design is composed of (1) registers and
combinational function blocks (e.g. adders and mul-
tiplexers) called the datapath and (2) a finite statema-
chine, called the controller that controls the transfer
of data through the function blocks and between the
registers.

In RTL design the gate-level design and optimiza-
tion of the datapath (registers, multiplexers, and
combinational functions) is done by the synthesizer.

2

However, the designer must design the state machine
and decide which register transfers are performed in
which state.

e RTL designer can trade off datapath complex-
ity (e.g. using more adders and thus using more
chip area) against speed (e.g. having more adders
means fewer steps are required to obtain the result).
RTL design is well suited for the design of CPUs and
special-purpose processors such as disk drive con-
trollers, video display cards, network adapter cards,
etc. It gives the designer great flexibility in choosing
between processing speed and circuit complexity.

e diagram below shows a generic component in
the datapath. Each RTL design will be composed of
one of the following building blocks for each register.
e structure allows the contents of each register to be
updated at the end of each clock period with a value
selected by the controller. e widths of the registers,
the types of combinational functions and their inputs
will be determined by the application. A typical de-
sign will include many of these components.

re
gi

st
er

m
ul

tip
le

xe
r

clock

arithmetic/logic
 function

arithmetic/logic
 function

arithmetic/logic
 function

...

fr
om

 r
eg

is
te

rs

...
...

...
from controller

RTL Design Example

To show how an RTL design is described in VHDL
and to clarify the concepts involved, we will design a
four-input adder. is design will also demonstrate
how to create packages of components that can be re-
used.

e datapath shown below can load the register at
the start of each clock cycle with one of: zero, the cur-
rent value of the register, or the sum of the register
and one of the four inputs. It includes one 8-bit regis-
ter, an 8-bit adder and a multiplexer that selects one

of the four possible inputs as the value to be added to
the current value of the register.

m
ul

tip
le

xe
r

re
gi

st
er

clock

ad
de

r

m
ul

tip
le

xe
r

0

a
b
c
d

from controller

Exercise 3: Other datapaths could compute the same result.

Draw the block diagram of a datapath capable of computing

the sum of the four numbers in three clock cycles.

e first design unit is a package that defines a
new type, num, for eight-bit unsigned numbers and
an enumerated type, states, with six possible val-
ues. nums are defined as a subtype of the unsigned
type.

-- RTL design of 4-input summer

-- subtype used in design

library ieee ;
use ieee.std_logic_1164.all ;
use ieee.std_logic_arith.all ;

package averager_types is
subtype num is unsigned (7 downto 0) ;
type states is (clr, add_a, add_b, add_c,

add_d, hold) ;
end averager_types ;

e first entity defines the datapath. In this case
the four numbers to be added are available as inputs
to the entity and there is one output for the current
sum.

e inputs to the datapath from the controller are
a 2-bit selector for the multiplexer and two control
signals to load or clear (set to 0) the register.

-- datapath

library ieee ;
use ieee.std_logic_1164.all ;
use ieee.std_logic_arith.all ;
use work.averager_types.all ;

entity datapath is
port (
a, b, c, d : in num ;

3

sum : out num ;
sel : in std_logic_vector (1 downto 0) ;
load, clear, clk : in std_logic
) ;

end datapath ;

architecture rtl of datapath is
signal mux_out, sum_reg, next_sum_reg : num ;
constant sum_zero : num :=

conv_unsigned(0,next_sum_reg'length) ;
begin

-- mux to select input to add
with sel select mux_out <=

a when "00",
b when "01",
c when "10",
d when others ;

-- mux to select register input
next_sum_reg <=

sum_reg + mux_out when load = '1' else
sum_zero when clear = '1' else
sum_reg ;

-- register sum
process(clk)
begin

if clk'event and clk = '1' then
sum_reg <= next_sum_reg ;

end if ;
end process ;

-- entity output is register output
sum <= sum_reg ;

end rtl ;

Exercise 4: Label the block diagram above with the bus
widths and signal names used in the entity.

What would happen if both clear and load inputs were
asserted? Why do we need to define both sum_reg and sum
signals?

How many clock cycles will it take to compute the sum of

the four inputs?

e RTL design’s controller is a state machine
whose outputs control the multiplexers in the data-
path. e controller’s inputs are signals that control
the controller’s state transitions. In this case the only
input is an update signal that tells our device to re-
compute the sum (presumably because one or more
of the inputs has changed).

is particular statemachine sits at the “hold” state
until the update signal is true. It then sequences
through the other five states and then stops at the hold
state again. e other five states are used to clear the
register and to add the four inputs to the current value
of the register.

-- controller

library ieee ;
use ieee.std_logic_1164.all ;
use work.averager_types.all ;

entity controller is
port (
update : in std_logic ;
sel : out std_logic_vector (1 downto 0) ;
load, clear : out std_logic ;
clk : in std_logic
) ;

end controller ;

architecture rtl of controller is
signal s, holdns, ns : states ;
signal tmp : std_logic_vector (3 downto 0) ;

begin

-- select next state
with s select ns <=

add_a when clr,
add_b when add_a,
add_c when add_b,
add_d when add_c,
hold when add_d,
holdns when others ; -- hold

-- next state if in hold state
holdns <=

clr when update = '1' else
hold ;

-- state register
process(clk)
begin

if clk'event and clk = '1' then
s <= ns ;

end if ;
end process ;

-- controller outputs
with s select sel <=

"00" when add_a,
"01" when add_b,
"10" when add_c,
"11" when others ;

load <= '0' when s = clr or s = hold else '1' ;

clear <= '1' when s = clr else '0' ;

end rtl ;

e next section of code is an example of how the
datapath and the controller entities can be placed in
a package, averager_components, as components.
In practice the datapath and controller component
declarations would probably have been placed in the
top-level architecture since they are not likely to be
re-used in other designs.

-- package for datapath and controller

4

library ieee ;
use ieee.std_logic_1164.all ;
use work.averager_types.all ;

package averager_components is

component datapath
port (
a, b, c, d : in num ;
sum : out num ;
sel : in std_logic_vector (1 downto 0) ;
load, clear, clk : in std_logic
) ;

end component ;

component controller
port (
update : in std_logic ;
sel : out std_logic_vector (1 downto 0) ;
load, clear : out std_logic ;
clk : in std_logic
) ;

end component ;

end averager_components ;

e top-level averager entity instantiates the two
components and interconnects them.

-- averager

library ieee ;
use ieee.std_logic_1164.all ;
use ieee.std_logic_arith.all ;
use work.averager_types.all ;
use work.averager_components.all ;

entity averager is port (
a, b, c, d : in num ;
sum : out num ;
update, clk : in std_logic) ;

end averager ;

architecture rtl of averager is
signal sel : std_logic_vector (1 downto 0) ;
signal load, clear : std_logic ;
-- other declarations (e.g. components) here

begin
d1: datapath port map (a, b, c, d, sum, sel, load,

clear, clk) ;
c1: controller port map (update, sel, load,

clear, clk) ;
end rtl ;

e result of the synthesizing the datapath is:

e register flip-flops are at the upper right, the adder
is in the middle and the input multiplexer is at the
lower le.

e result of the synthesizing the controller is:

e following timing diagram shows the datapath
output and the controller state over one computation.
Note that the state and output transitions take place
on the rising edge of the clock. Also note that the out-
put is updated at the end of the state in which a par-
ticular operation is performed.

a+b+c+d

update

clock

state

sum

clear add_a add_b add_c add_d holdhold

0 a a+b a+b+c

hold

XX a+b+c+d

RTL Timing Analysis

As usual, the datapath should be designed as a syn-
chronous sequential circuit that uses the same clock
for all registers. All register contents thus change at
the same time. e controller also uses the same clock
as the datapath.

5

e result is that each datapath register loads the
values “computed” during one state at the end of that
state (which is then the start of the computation for
the next state).

We can guarantee that the correct results will be
loaded into registers if the longest propagation de-
lay (tPD) through any path through the combinational
logic that lies between register outputs and inputs is
less than the clock period (tclock)minus the registers’
setup time (ts) and clock-to-output (tCO) delays:

tPD < tclock − ts − tCO

state n−1 state n state n+1

 clock edges
(change of state)

max. propagation
 delay

clock

timing margin
register setup time

register input

clock−to−
output delay

Using a single clock means we only need to com-
pute the delay through combinational logic blocks
which is much simpler than having to predict the
effect of propagation delays on clock signals. is
is why almost all large-scale digital circuits are syn-
chronous designs.

Synthesis tools can be asked to synthesize logic that
operates at a particular clock period. e synthesizer
is supplied with the propagation delay specifications
for the combinational logic components available in
the particular technology being used and it will then
try to arrange the logic so that the longest propaga-
tion delay between any register output and any reg-
ister input is less than the clock period (minus setup
and clock-to-output delays). is ensures that the cir-
cuit will work properly at the specified clock rate.

6

