ELEX 3330 : Programmable Logic Devices
2016 Winter Term

Testing and Debugging

This chapter covers some ways that PLD and FPGA designs can be tested and debugged.

You should be able to: explain the pros and cons of simulation versus hardware testing of FPGA designs; describe the
use of test vectors and test benches; explain the difference between functional (RTL) and gate-level (timing) simulations;
give examples of non-synthesizable VHDL features that can be used in testbenches; describe different ways to generate test
vectors; select between external and internal data generators and logic analyzers.

Design Verification

Verification means testing a design to verify that it
meets requirements. The effort required to verify a
design often exceeds that required for the design it-
self.

To “re-spin” a IC design that has an error requires
much time (months) and money ($100ks). Such
errors are often “fatal” because the product misses
a market window or for financial reasons. Thus
ASIC designers check their designs carefully before
“taping out” to manufacturing. ASIC verification is
done through extensive simulations to verify both the
functionality of the design and that it will operate at
the required clock frequency.

FPGA designers have it relatively easy. Recompil-
ing an FPGA design to fix an error may only take a
few hours for a moderately complex design. In many
products the FPGA is configured by software running
on an attached processor and a new FPGA configu-
ration file can be included in a firmware update. This
allows the FPGA design to be updated after the prod-
uct is in the field.

Simulation vs Hardware Verification

FPGA designers also have the option of testing their
designs on the FPGA itself in addition to simulating
their designs. This allows the design to be tested in the
final circuit configuration (with the same interfaces,
power supply, etc.).

Simulations have several advantages. Simulations
can be easily automated as described below.

It’s also relatively easy to supply test data (“test vec-
tors”) to an FPGA being simulated and collect and
process the results.

On the other hand, simulations can run many or-
ders of magnitude slower than real time. This makes

lech.tex

it time-consuming (or impractical) to run extensive
tests.

Conversely, testing a design on the actual FPGA
hardware often requires building custom test jigs and
using specialized equipment for testing (described
below).

However, tests on an FPGA design can run in real
time. This is ideal for situations where the testing
needs to process a lot of of data.

The differences between testing by simulation and
using the FPGA hardware can be summarized as fol-

lows:
criteria simulation hardware
simulation speed slow real-time
test vector interface easy hard
test automation easy hard
test environment simplified realistic

Functional (RTL) versus Timing (Gate-Level)
Simulation

Functional testing verifies the design assuming zero
propagation delay through the combinational logic.
This checks that the logical or functional design is
correct. This can be done before the design is mapped
into gates and placed on specific portions of the chip.

Timing simulation verifies that the design will be-
have correctly with the actual signal delays in the final
design.

FPGA software uses timing constraints (to be cov-
ered later) and a model of delay through logic blocks
and interconnects to try to ensure that the timing re-
quirements will be met. This can only be done af-
ter the design has been synthesized and fit to specific
functional block on the FPGA so that the actual de-
lays are known.

It is typically assumed that the FPGA synthesizer
will correctly estimate the delays and ensure that all

2016-04-21 12:57

timing constraints are met. Thus the main purpose
of timing simulations for FGPA designs is to ensure
no timing constraints have been missed and resulted
in timing that is out of spec.

Test Benches and Test Vectors

A “test bench” (or testbench) is software used to test
a device. Test benches typically use “test vectors”
which are sequences of input and output bit vectors.
The test bench applies the input part of the test vec-
tor to the device under test (DUT) and checks if the
DUT’s output matches the output part of the test vec-
tor. Any differences are recorded as errors that need
to be fixed.

DUT

NG

A

testbench

]

test
vectors

In some cases the test bench can compute the ex-
pected output itself based on a known-good model of
the device behaviour instead of reading the test vec-
tors from a file.

Test benches are often written in the same HDL' as
the design being tested to make it easier to interface
the testbench and DUT.

Since the testbench code does not need to be syn-
thesized, it can use additional features of these HDLs.
Examples of language features that are used in test
benches but are not synthesizable to hardware include
while-loops, file i/0 and print statements. These lan-
guage features makes writing a model to predict the
expected behaviour much easier than it would be if
we were limited to using synthesizable code.

Generating Test Vectors

In most cases it’s possible to predict the desired output
of a design. We can build a list of test inputs and the
expected outputs for each case.

'Hardware Description Language of which VHDL and Ver-
ilog are the two most common.

For simple designs the test vectors can be generated
by hand (e.g. using a vector waveform editor). How-
ever, in many cases the operations carried out by the
DUT are too complex to compute by hand or there
are too many test cases to be generated. In this case
the test vectors must be computed by other means.

input to DUT expected output
0001 0000
0010 0011
0100 1010

Exercise 1: Write a few test vectors for an adder with two-bit
inputs and a three-bit output. Would it be practical to cover all
possible input conditions for a 64-bit adder?

Typically this is done by using a reference design
that is known to be correct. For example, test vectors
for a signal processor could be generated by applying
the input part of the test vector to a program written
in, for example, Matlab. The software implementa-
tion would be supplied with test inputs representing
the expected output for various inputs.

The results of the simulation might be required to
be “bit exact” in which case the DUT output must
match the test vectors xactly or some roundoff error
may be allowed.

Selection of test inputs depends on an understand-
ing of typical types of errors and normally will in-
clude both expected operating conditions and un-
usual “corner cases.”

In some cases the reference design is a version of
the product that already exists. In this case the test
vectors can be generated by capturing the inputs and
outputs of the reference unit.

known-
test good
data design

DUT
testbench

In some cases it’s impractical to generate test vec-
tors because they would be too large or because the
tests can be more easily written by having the test-
bench react to the output of the design being tested.

In this case the testbench would include code to gen-
erate the expected output from the input.

Test Strategies

It’s often more effective to test components of a design
individually rather than the complete design. This
“unit testing” makes it easier to isolate the source of a
problem.

On larger projects the design is tested periodi-
cally during development (often every night) to find
newly-introduced errors called “regressions.”

It’s often useful to start testing before a design is
complete. As each part of a design is completed, tests
vectors and scripts are prepared and added to the test
suite for regression testing.

Running these tests manually would take too long
and be too error-prone. Scripts are used to automate
testing by compiling the code, running simulations
and summarizing the results.

Many EDA (Electronic Design Automation) tools,
including the FPGA design and test software from Al-
tera and Xilinx can be controlled by scripts written in
a language called tcl (Tool Command Language, pro-
nounced “tickle”)?.

Test Equipment

When testing the design on the actual hardware
we need to replace the software testbench with test
equipment.

Test inputs can be supplied by test equipment that
outputs programmed data to the DUT. This “digital
pattern generator” is a signal generator for digital sig-
nals. In many cases it's more practical to configure
another FPGA to supply the test inputs.

A logic analyzer is test equipment that captures
digital signals. It is similar to an oscilloscope but for
digital signals. They can capture the states of many
bits simultaneously. The data can be sampled at a
fixed clock rate or on the edges of a signal that is
defined to be a clock. Logic analyzers have flexible
trigger conditions, including configurable state ma-
chines, so that they can capture very specific events.
Logic analyzers differ in the number of inputs, the

?For an slightly unusual application, see the lab 4 GUIL.

speeds that they can capture, the amount of mem-
ory, logic families supported and how they connect
to the DUT. Probing high-speed signals requires that
test connectors have been designed onto the PC board
so that these signals can be probed by the logic ana-
lyzer without distorting them.

In many cases FPGA designers can replace logic
analyzers with additional logic that can be configured
into the FPGA to capture signals in the same was as
an external logic analyzer. The on-chip logic analyzer
feature is called SignalTap by Altera and ChipScope
by Xilinx.

Some disadvantages of using the built-in logic an-
alyzer are that the design must be recompiled each
time there is a change to the signals that are being
probed and that the logic analyzer functionality con-
sumes FPGA resources.

These features are controlled by a PC over the JTAG
(programming and boundary scan) port on the chip.

JTAG

“ITAG” (Joint Test Action Group) is a standard for
configuring and testing ICs. It is a clocked serial in-
terface that was originally designed to test connectiv-
ity between the pins different packages on one PCB. It
does this “boundary scan” by passing data through a
long chain of flip-flops (i.e. a shift register) that allows
setting and reading the state of each pin.

JTAG interfaces can also be used to program FP-
GAs, PLDs and various type of memory. They are
also used to interface with on-chip debugging fea-
tures such as logic analyzers.

Each JTAG port has serial data in and out pins, a
clock signal and a test-mode-select (TMS) signal that
is used to switch between the interfaces’s control- and
data-transfer modes. The data pins pass data serially
between all the devices on a board while the clock
and mode select signal are applied in parallel to all
devices’:

L TMs s \—TMS
TCK TCK

DEVICE 1 " DEVICE 2 DEVICE 3

O—m TDO| wll TDO| wl TDO
D0
{am;

3From Wikipedia.

