
ELEX 3330 : Programmable Logic Devices
2016 Winter Term

More VHDL

is chapter covers a few additional VHDL features that are commonly used for logic design.
You should be able to: declare enumerated types and subtypes of array types in architectures and packages; declare and use
entities with generics; instantiate tri-state outputs; and create RAM and ROMmemories.

Type Declarations

It’s oen useful to make up new types for a project.
We can do this in VHDL by using type declarations.
e most common uses for defining new types are to
create signals of a given width (i.e. a bus) and to de-
clare types that can only have one of a set of possible
values (called enumeration types).

Type declarations are oen placed in packages to
make them available tomultiple design units. e fol-
lowing example shows a package called dsp_types
that declares two new types:

package dsp_types is
type mode is (slow, medium, fast) ;
subtype word is std_logic_vector (15 downto 0) ;

end dsp_types ;

Note that we need to use a subtype declaration in
the second example because the std_logic_vector
type is already defined.
Exercise 1: Write a declaration for a signal that indicates

whether the value in a register should be loaded, incremented,

decremented, or held. Write the declaration for an 8-bit signal

type called byte.

Generics

An entity can be declared with a bus or register size
that is le undefined until the component is used
(“instantiated”) by adding a generic clause in its en-
tity and component declarations. For example, a reg-
ister with negated outputs could be declared in the file
nregister.vhd as:

-- register with negated output

entity nregister is
generic (width : integer) ;
port (d : in bit_vector (width-1 downto 0) ;

q : out bit_vector (width-1 downto 0) ;

clk : in bit) ;
end nregister ;

architecture rtl of nregister is
signal tmp : bit_vector(width-1 downto 0) ;

begin
process(clk)
begin

if clk'event and clk='1' then
tmp <= d ;

end if ;
end process ;
q <= not tmp ;

end ;

you might declare the nregister component in a
package as:

package registers is
component nregister

generic (width : integer) ;
port (d : in bit_vector (width-1 downto 0) ;

q : out bit_vector (width-1 downto 0) ;
clk : in bit) ;

end component ;
end registers ;

and then use it in another architecture as follows:

use work.registers.all ;
...

r1: nregister
generic map (8)
port map (din, dout, clk) ;

...

You should use generics if your component might
have to be instantiated with various signal widths.

Attributes

Each signal has a number of properties associated
with it which can be extracted andused in expressions
by using VHDL’s attributes. For example, the num-
ber of elements in an array x is given by x'length.
Other useful attributes are left, right, high, low
which extract the appropriate index limits and range
which extracts the index range.

lec4.tex 1 2016-04-13 22:58

Exercise 2: Which attribute have we been using to make reg-

ister outputs change only when the clock signal changes?

Tri-State Buses

A tri-state output can be set to high and low logic lev-
els as well as to a third state: high-impedance (‘Z’).
is type of output is used where different devices’
outputs are connected together and drive a common
bus (hopefully at different times!). To specify that an
output should be set to the high-impedance state, we
use a signal of type std_logic and assign it a value
of ’Z’.

e following example shows an implementation
of a 4-bit buffer with an enable output. When the en-
able is not asserted the output is in high-impedance
mode :

library ieee ;
use ieee.std_logic_1164.all ;

entity tbuf is port (
d : in std_logic_vector (3 downto 0) ;
q : out std_logic_vector (3 downto 0) ;
en : in std_logic
) ;

end tbuf ;

architecture rtl of tbuf is
begin

q <=
d when en = '1' else
"ZZZZ" ;

end rtl ;

e resulting schematic for the tbuf is:

Tri-state outputs are used primarily to implement
bidirectional bus signals. Bidirectional buses are de-
clared of type inout rather than in or out and their
values can be both ‘read’ and ‘written’ within the ar-
chitecture (unlike signals of type out). When the bus
is to act as an input, the bidirectional bus signals are
driven to the high-impedance state and in this case it’s
the value of other signals that determine the signal’s
value.

e std_logic types use the following table1 to
determine the result when a signal is multiply-driven:

CONSTANT resolution_table : stdlogic_table := (
-- ---
-- | U X 0 1 Z W L H - | |
-- ---

('U', 'U', 'U', 'U', 'U', 'U', 'U', 'U', 'U'), -- | U |
('U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X'), -- | X |
('U', 'X', '0', 'X', '0', '0', '0', '0', 'X'), -- | 0 |
('U', 'X', 'X', '1', '1', '1', '1', '1', 'X'), -- | 1 |
('U', 'X', '0', '1', 'Z', 'W', 'L', 'H', 'X'), -- | Z |
('U', 'X', '0', '1', 'W', 'W', 'W', 'W', 'X'), -- | W |
('U', 'X', '0', '1', 'L', 'W', 'L', 'W', 'X'), -- | L |
('U', 'X', '0', '1', 'H', 'W', 'W', 'H', 'X'), -- | H |
('U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X') -- | - |

);

For example, a signal driven by 1 and Z “resolves”
to 1.
Exercise 3: What is the result of driving an std_logic signal

with both ‘1’ and ‘0’?

e tri-state enable is usually controlled by an ad-
dress decoder or other logic that “arbitrates” bus use.

MemoryModels

VHDL also allows the use of arrays with signal in-
dices to model random-access memory (RAM). e
following example demonstrates the use of VHDL ar-
rays as well as bi-directional buses. We must use the
type-conversion function to_integer because the
address input, a, is of type unsigned while the array
index must be of type integer.

library ieee ;
use ieee.std_logic_1164.all ;
use ieee.numeric_std.all ;

entity ram is port (
-- bi-directional data signal
d : inout std_logic_vector (7 downto 0) ;
-- address input
a : in unsigned (1 downto 0) ;
-- output enable and write strobe (clock)
oe, wr : in std_logic) ;

end ram ;

architecture rtl of ram is
subtype byte is std_logic_vector (7 downto 0) ;
type byte_array is array (0 to 3) of byte ;
signal ram : byte_array ;

begin
-- output value is the indexed array element
d <=

ram(to_integer(a)) when oe = '1' else
"ZZZZZZZZ" ;

-- register the indexed array element

1From the IEEE 1164-1993 standard.

2

process(wr)
begin

if wr'event and wr = '1' then
ram(to_integer(a)) <= d ;

end if ;
end process ;

end rtl ;

Exercise 4: Modify the design above to create a 16-element,

4-bit wide RAM with separate input and output signals.

Exercise 5: How would you model a ROM?

e result of synthesizing this description using
Quartus II is:

wr

ram

SYNC_RAM

WE
1'h1

CLK0

DATAIN[7..0]

WADDR[1..0]

RADDR[1..0] DATAOUT[7..0]a[1..0]

d[7..0]

d[7..0]
DATAIN

OE
OUT0

oe

For many implementation technologies (FPGAs,
gate arrays, or standard-cell ASICs) there are usually
vendor-specific ways of implementing memory ar-
rays that give better results. However, using a VHDL-
only model as shown above is more portable andmay
be practical for small memories such as CPU “register
files.”
Exercise 6: Why is portability desirable?

3

