
ELEX 3330 : Programmable Logic Devices
2016 Winter Term

Hierarchical Design with VHDL

is chapter covers some features of VHDL that are useful for logic synthesis. You should learn to: make library packages
visible; declare components in architectures and packages; declare constants; instantiate components into an architecture,
declare std_logic, std_logic_vector, signed and unsigned signals; declare enumerated types and subtypes of array types; in
architectures and packages use conditional signal assignments; and convert between std_logic_vector, unsigned and integer
types.

Libraries, Packages and Components

When designing complex logic circuits it helps to de-
compose a design into simpler parts. Each of these
parts can be written and tested separately, perhaps
by different people. If the parts are sufficiently gen-
eral then it’s oen possible to re-use them in future
projects. In VHDL, design re-use is done by us-
ing “components.” A component can be a general-
purpose building-block (e.g. an adder or a counter),
or it can be sub-system of your design.

Before we use a component, we first need to de-
clare it. A component declaration is very similar to
an entity declaration — it defines the input and out-
put signals, not the functionality.

In order to avoid declaring each component in ev-
ery architecture where it is used, we typically place
component declarations in “packages.” A package is
a database containing information about the compo-
nents in the package (each component’s inputs, out-
puts, types, etc). A package typically contains a set of
component declarations for a particular application.
Packages are themselves stored in “libraries”:

Library

component

component

Package

component

component

Package

To use a component in a design, we use library
statements to specify the libraries to be searched and
a use statement for each package we need to use. e
two most commonly used libraries are called IEEE
and WORK.

e WORK library is specific to a project and is avail-
able without having to use a library statement.
library and use statements must be used be-

fore each design unit (entity or architecture) that uses

those packages1. For example, if you wanted to use
the numeric_bit package in the ieee library you
would use:

library ieee ;
use ieee.numeric_bit.all ;

and if you wanted to use the dsp package in the WORK
library you would use:

use work.dsp.all ;

Exercise 1: Why is there no library statement in the second

example?

Note that a component defines an interface to an-
other device. at devicemay not have been designed
using VHDL so there may not necessarily be a corre-
sponding entity declaration.

Creating Components

A component declaration is similar to an entity dec-
laration and defines the input and output signals.

Component declarations can be placed in an ar-
chitecture before the begin. But it’s usually more
convenient to put component declarations within a
package declaration to avoid duplicating the decla-
ration. When we compile (or “analyze”) the package
declaration the information about the components in
the package is saved in the WORK library. e com-
ponents in the packages can then be used in an archi-
tecture (in that same file or in other files) by using the
appropriate use statements.

For example, the following code declares a package
called flipflops. is package contains only one
component, rs, with inputs r and s and an output q:

1An exception: when an architecture immediately follows its
entity you need not repeat the library and use statements.

lec3.tex 1 2016-04-12 10:11

package flipflops is
component rs

port (r, s : in bit ; q : out bit) ;
end component ;

end flipflops ;

Exercise 2: If this codewas analyzed, what informationwould

be saved? Where?

Component Instantiation

Once a component has been declared, it can be used
(“instantiated”) in an architecture. A component in-
stantiation describes how the component’s ports are
connected to signals in the architecture. It is a concur-
rent statement (as is a selected assignment statement).

e following example shows how three 2-input
exclusive-or gates can be used to build a 4-input
parity-check circuit using component instantiation.
is type of description is called structural as opposed
to behavioural VHDL because we are defining the
structure rather than the behaviour of the circuit.

In this case we have put the component declaration
into the file mypackage.vhd. e xor_pkg contains
the xor2 component (although a typical package de-
fines more than one component):

-- define an xor2 component in a package

package xor_pkg is
component xor2

port (a, b : in bit ; x : out bit) ;
end component ;

end xor_pkg ;

A second file, parity.vhd, describes the parity en-
tity that uses the xor2 component:

-- parity function built from xor gates

use work.xor_pkg.all ;

entity parity is
port (a, b, c, d : in bit ; p : out bit) ;

end parity ;

architecture rtl of parity is
-- internal signals
signal x, y : bit ;

begin
x1: xor2 port map (a, b, x) ;
x2: xor2 port map (c, x, y) ;
x3: xor2 port map (d, y, p) ;

end rtl ;

e resulting top-level schematic for the parity en-
tity is:

Exercise 3: Label the connections within the parity generator

schematic with the signal names used in the architecture.

When the parity.vhd file is analyzed (“com-
piled”), the synthesizer will search the (WORK) library
for the xor_pkg package.

We could also have put the xor_pkg package
declaration in the parity.vhd file (the package
would then be recreated every time we analyzed
parity.vhd).

Although components don’t necessarily have to be
created using VHDL, we could have done so by us-
ing the following entity/architecture pair in file called
xor2.vhd:

-- xor gate

entity xor2 is
port (a, b : in bit ; x : out bit) ;

end xor2 ;

architecture rtl of xor2 is
begin

x <= a xor b ;
end rtl ;

std_logic Packages

e IEEE library contains two useful packages.
ese packages define alternatives to the bit and
bit_vector types for logic design.

e first package, std_logic_1164, defines
the types std_logic (similar to bit) and
std_logic_vector (similar to bit_vector).
e advantage of the std_logic types is that they
can have values other than ‘0’ and ‘1’. For example,
an std_logic signal can also have undefined (‘X’,
useful for simulation), high-impedance values (‘Z’
useful for implementing tri-state outputs)2. e
std_logic_1164 package also redefines (“over-
loads”) the standard boolean operators (and, or,
not, etc.) so that they work with std_logic signals.

2Don’t care, ‘-’, can sometimes be used for synthesis.

2

e second package, numeric_std3 defines the
types signed and unsigned. ese are subtypes of
std_logic_vector with overloaded operators that
allow them to be used both as vectors of logic values
and as as binary numbers (in signed two’s comple-
ment or unsigned representations). e hierarchy of
these logic types could be drawn as follows:

std_logic std_logic_vector

signed unsigned

declared in
 std_logic_1164

declared in
 numeric_std

e standard arithmetic operators (+, -, *, /, **,
>, <, <=, >=, =, /=) can be applied to signals of type
signed or unsigned. Note that it may not be practi-
cal or possible to synthesize complex operators such
as multiplication, division or exponentiation.

For example, we could generate the combinational
logic to build a 4-bit adder as follows:

library ieee ;
use ieee.std_logic_1164.all ;
use ieee.numeric_std.all ;

entity adder4 is
port (
a, b : in unsigned (3 downto 0) ;
c : out unsigned (3 downto 0)) ;

end adder4 ;

architecture rtl of adder4 is
begin

c <= a + b ;
end rtl ;

e resulting schematic is:

3Another package, std_logic_arith is widely used.

Constants

We can declare symbolic constants in the same way
as signals. For example:

constant zero_bits : unsigned (3 downto 0) := "0000" ;

A constant declared in a package is available to all de-
sign units (packages, entities and architectures) that
use that package. You should use symbolic constants
for any values that are likely to change or if it makes
your code easier to read or easier to modify.

Integers

VHDL also includes an integer type which is useful
for specifying small constants (e.g. next_x <= x + 1
;). However, signals should be declared std_logic
or one of its subtypes, not integer.

Type Conversion Functions

VHDL is a strongly-typed language – each opera-
tor must be supplied arguments of exactly the right
type or the synthesizer will give an error message.
Although many functions and operators (e.g. and)
are overloaded so that you can use the same func-
tion/operator withmore than one type, inmany cases
you will need to use type conversion functions.

e following type conversion functions are found
in the the std_logic_1164 package in the ieee li-
brary:

from to function
lv bv to_bitvector(x)
bv lv to_stdlogicvector(x)

e following type conversion functions are found
in the the numeric_std package in the ieee library.

from to function
un,lv un signed(x)
sg,lv un unsigned(x)
un,sg lv std_logic_vector(x)
un,sg in to_integer(x)
in un to_unsigned(x,len)
in sg to_signed(x,len)

3

e abbreviations bv, lv, un and in are used for
bit_vector, std_logic_vector, unsigned and
integer respectively.

Functions in the numeric_std package “over-
load” most of the arithmetic and comparison oper-
ators (e.g. +, =) so that they take integer as well as
unsigned operands. Note that when converting an
integer you must explicitly specify the number of
bits in the result (len).

For example:

constant awidth : integer := 24 ;
constant dwidth : integer := 8 ;
constant r1addr : std_logic_vector (awidth-1 downto 0)

:= std_logic_vector(X"1A_0002") ;
signal abus : unsigned (awidth-1 downto 0) ;
signal r1, d : std_logic_vector (dwidth-1 downto 0) ;

...
r1 <=

d when abus = to_unsigned(r1addr,awidth) else
b"0000_0000" ;

Exercise 4: What is the type of the constant X"1A_0002"?
What is the purpose of the to_unsigned() function in the

last line of the above example? What conversion function(s)

would you need to use if r1addr was declared to be of type

bit_vector?

Conditional Assignment

In the same way that a selected assignment statement
models a case statement in a sequential programming
language, a conditional assignment statement mod-
els an if/else statement. Like the selected assignment
statement, it is also a concurrent statement.

For example, the following circuit outputs the po-
sition of the le-most ’1’ bit in the input:

library ieee ;
use ieee.std_logic_1164.all ;

entity nbits is port (
b : in std_logic_vector (3 downto 0) ;
n : out std_logic_vector (2 downto 0)) ;

end nbits ;

architecture rtl of nbits is
begin

n <=
"100" when b(3) = '1' else
"011" when b(2) = '1' else
"010" when b(1) = '1' else
"001" when b(0) = '1' else
"000" ;

end rtl ;

Note that the conditions are tested in the order that
they appear in the statement and only the first value
whose controlling expression is true is assigned.

In the same way that we can view a selected assign-
ment statement as the VHDL model for a ROM or
lookup table, a conditional assignment statement can
be viewed the VHDL description of a tree of multi-
plexers. For example, the structure of the example
above could be drawn as:

"100"

"011"

"010"

"001"

"000"

b(0)=’1’

b(1)=’1’

b(2)=’1’

b(3)=’1’

n

Synthesizing the above description results in:

Exercise 5: Write a conditional assignment that models a 2-

to-1 multiplexer. Use an array x as the input, a signal sel to

select the input and a signal y as the output. Repeat for a 4-to-

1 multiplexer (sel is now an array).

e choice of selected or conditional assignments
can affect the logic that is generated. A conditional
assignment implies an ordered sequence of two-way
decisions which results in the multiplexer tree as
shown above. A selected assignment implies a logic
circuit that evaluates all possible inputs simultane-
ously. is implies a single-stage sum-of-products
(or equivalent) circuit. e circuit generated by a se-
lected assignment will typically require less logic but
will incur a longer propagation delay.

However the logic synthesizer may need to opti-
mize the original circuit tomeet either speed or space
constraints. e final circuit may not match either of
the above models.

ReservedWords

Note that there are 97 fairly common words (e.g.
next, new, open) that are reserved words and cannot
be used as VHDL identifiers.

4

