
ELEX 3330 : Programmable Logic Devices
2016 Winter Term

State Machine Design with VHDL

is lecture reviews the design of sequential logic and introduces the use of VHDL to design sequential logic.
Aer this lecture you should be able to:

• design a state machine from an informal description of its operation, and

• write a VHDL description of a state machine.

Sequential Logic and State Machines

Sequential logic circuits are circuits whose outputs are
a function of their state as well as their current inputs.
e state of a sequential circuit is the contents of the
memory devices in the circuit. All sequential logic
circuits have memory.

ere are two basic types of state machines. In the
Moore state machine the output is a function only of
the current state:

output

co
m

bi
na

tio
na

l

 lo

gi
c

memory
input

co
m

bi
na

tio
na

l

 lo

gi
c

whereas in the Mealy state machine the output is a
function of the current state and the current inputs:

output

co
m

bi
na

tio
na

l

 lo

gi
c

memory
input

co
m

bi
na

tio
na

l

 lo

gi
c

Moore state machines are simpler and are oen pre-
ferred because we can use registered outputs to avoid
glitches. However, since their outputs only change on
clock edges they cannot respond as quickly to changes
in the input.
Exercise 1: Which signal in the above diagrams indicates the

current state?

Any sequential logic circuit, even the most com-
plex CPU, can be described as a state machine (also
called a “finite” state machine or FSM).

However, large sequential circuits such as micro-
processors are too complex to be described as a state
machine.
Exercise 2: How may possible states are there for a CPU con-

taining 10,000 flip-flops?

Instead, the design is partitioned into data regis-
ters and relatively simple state machines. ese state
machines then select the arithmetic and logic opera-
tions performed on the data data as it is transferred
between the registers:

WXEXI�QEGLMRI

�STIVEXMSR�VIKMWXIVW �VIKMWXIVW

WIPIGX WIPIGX WIPIGX

is type of design is called Register Transfer Level
(RTL1) design. In this chapter we will study the de-
sign of simple FSMs. Later, we will combine these
simple state machines with registers and arithmetic
operations to build complex devices.

Common Sequential Logic Circuits

e flip-flop is the basic building block for designing
sequential logic circuits. It’s purpose is to store one
bit of state. ere are many types of flip-flops but the
only one we will use is the D (delay) flip-flop.

D Q

clock

1RTL can also mean Register Transfer Language and Register
Transfer Logic

lec2.tex 1 2016-03-31 13:04

e rising edge of a clock input causes the flip-flop
to store the value of the input (typically calledD) and
make it available on the output (typicallyQ). us the
D flip-flop has a next-state input (D), a state output
(Q) and a clock input. e D flip-flop state changes
only on the rising clock edge.

D

Q

clock
t

Exercise 3: Fill in thewaveform for the Q signal in the diagram

above.

Usually all of the flip-flops in a circuit will have the
same signal applied to their clock inputs. is syn-
chronous operation guarantees that all flip-flops will
change their states at the same time and makes it eas-
ier to estimate the minimum clock period (or maxi-
mum frequency) for the circuit to operate properly.

Synchronous design is nearly universal. You
should avoid putting logic in clock paths and never do
it in this course. Reliable interconnection of circuits
that use different clocks requires special techniques
that we will study later.

A register is several D flip-flops with their clocks
tied together so that all the flip-flops are loaded si-
multaneously. A latch is a register that whose output
follows the input (is transparent) when the clock is
low.

clock

n n

Exercise 4: What would be another name for a 1-bit register?

A shi register is a circuit of several flip-flops where
the output of each flip-flop is connected to the input
of the adjacent flip-flop:

D Q D Q D Q

clock

serial
input

serial
output

On each clock pulse the state of each flip-flop is trans-
ferred to the next flip-flop. is allows the data
shied in at one “end” of the register to appear at the
other end aer a delay equal to the number of stages
in the shi register. e flip-flops of a shi registers
can oen be accessed directly and this type of shi
register can be used for converting between serial and
parallel bit streams.
Exercise 5: Add the parallel outputs to the shift register dia-

gram.

A counter is a circuit with an N-bit output whose
value increases by 1 with each clock. A synchronous
counter is a conventional state machine and uses a
combinational circuit (an adder) to select the next
count based on the current count value. A ripple
counter is a simpler circuit in which the the Q out-
put of one flip-flop drives the clock input of the next
counter stage and the flip-flop input is its inverted
output.
Exercise 6: Is a ripple counter a synchronous logic circuit?

Design of State Machines

is section describes how to design a Moore state
machine, the only kind you will need to design in this
course.

Definition

Step 1 - Inputs and Outputs

e first step is to accurately identify the inputs and
outputs. is is important because the rest of the de-
sign effort will be wasted if there are missing inputs
or outputs.

Step 2 - States

List all possible combinations of output values. For a
Moore state machine each of these will correspond to
a state.

Step 3 - State Transitions and Additional States

Use the definition of the machine’s behaviour to list
the input condition(s) required for each possible state
transition.

Split up states whose next-state transition is not
uniquely determined from the current state and the

2

input. ese additional states will be represented by
flip-flops which are not connected to outputs.

Documentation

e FSM can be described as a state transition table
that lists the next state for each possible combination
of state and input.

A FSM can also be described as a state transition
diagram using circles for states. Arrows representing
transitions connect the states. States are labelled with
the corresponding output values and transitions with
the corresponding input conditions.

Implementation

A Moore state machine uses one flip-flop for each
output and additional flip-flops to represent the
added states.

Up to n states can be represented with n flip-flops
(e.g. 3 flip-flops can encode up to 8 states). Another
common alternative is to use one flip-flop per state.
Exercise 7: If we used 8-bits of state information, how many

states could be represented? What if we used 8 bits of state

but added the condition that exactly one bit had to be set at

any given time (a so-called “one-hot encoding”)?

We then design the combinational logic that deter-
mines the next state based on the current state and the
input. e design of this combinational circuit pro-
ceeds as described earlier.

We also need to apply a clock signal to the clock
inputs of each flip-flop. e FSMwill change state on
every rising edge of this clock.

Practical circuits also require some means to ini-
tialize (reset) the state. A synchronous reset can be
included in the FSM design as another input. Asyn-
chronous reset signals set/reset all the flip-flops inde-
pendently of the clock. ey can simplify the design
and are required if we can’t be certain that the system
will always be in a valid state (e.g. on power-up).

Example: Resetable 2-bit Counter

A resetable 2-bit counter has one input (reset) and
two one-bit outputs. ere are four valid combina-
tions of the outputs (00, 01, 10 and 11) and thus (at
least) four states. e transition conditions are to go
from one count to the next higher count if the reset
input is not active, otherwise go to the zero state.

If we use the variables R as the reset, Q0 and Q1
to represent the outputs, and Q0’ and Q1’ as the next
output, the state transition table would be as follows:

Q1 Q0 R Q1’ Q0’
0 0 0 0 1
0 1 0 1 0
1 0 0 1 1
1 1 0 0 0
X X 1 0 0

where ‘X’ is used to represent all possible values (oen
called a “don’t care”).

In this case no additional state variables are re-
quired since each state transition is uniquely defined
by the current state and the input.

We can obtain the following sum-of-products ex-
pressions for these equations:

Q1’ = Q1Q0R + Q1Q0R
Q0’ = Q1Q0R + Q1Q0R

Exercise 8: Write the tabular description and draw the

schematic of a resetable 2-bit counterwith demultiplexed out-

puts (only one of the four outputs is true at any time). You

can assume the counterwill always be reset before beingused.

Howdoes this counter compare to theprevious one in termsof

number of flip-flops and the complexity of the combinational

logic?

Exercise 9: Draw the state transition diagram.

Sequential Circuits in VHDL

e design of sequential circuits in VHDL requires
the use of the process statement. Process statements
can include sequential statements that execute one
aer another as in conventional programming lan-
guages. However, for the logic synthesizer to be able
to convert a process to a logic circuit, the processmust
have a very specific structure.

In this course you may only use the simple three-
line process shown below. Using processes solely for
registers reinforces that you are designing hardware.
Also, the rules for synthesizing sequential statements
within procedures are too complex to cover in this
course. In this course you may only use processes
to generate registers and may only use the single-if
structure shown below.

As an example, the following VHDL description of
a D flip-flop synthesizes to the following circuit:

3

entity d_ff is port (
clk, d : in bit ;
q : out bit) ;

end d_ff ;

architecture rtl of d_ff is
begin

process(clk)
begin

if clk'event and clk = '1' then
q <= d ;

end if ;
end process ;

end rtl ;

e expression clk'event (pronounced “clock
tick event”) is true when the value of clk has changed
since the last time the process was executed. is is
how we model memory in VHDL.

Within the process the output q is only assigned a
value if clk changes and the new value is 1. Between
clock edges the output retains its previous value. It’s
necessary to check for clk=1 to distinguish between
rising and falling edges of the clock.

FSMs in VHDL are implemented using concurrent
assignment statements (e.g. selected assignments) to
generate the next state as a function of the current
state and input values. e process above generates
the flip-flops that define the current state.

is corresponds to the following block diagram:
input

output

next
state

current
 state

clock

 concurrent
assignments

 register
(process)

A VHDL description for a 2-bit counter could be
written as follows:

entity count2 is port (
clk : in bit ;
count_out : out bit_vector (1 downto 0)) ;

end count2 ;

architecture rtl of count2 is
signal count, next_count : bit_vector (1 downto 0) ;

begin
-- combinational logic for next state

with count select next_count <=
"01" when "00",
"10" when "01",
"11" when "10",
"00" when others ;

-- combinational logic for output
count_out <= count ;

-- sequential logic
process(clk)
begin

if clk'event and clk = '1' then
count <= next_count ;

end if ;
end process ;

end rtl ;

Exercise 10: Draw the block diagram corresponding to this

VHDL description. Use a multiplexer for the selected assign-

ment and and a register for the state variables. Label the con-

nections, inputs and outputs with the corresponding VHDL

signal names.

Note that two signals need to be defined for each
flip-flop or register in a design: one signal for the in-
put (next_count in this case) and one signal for the
output (count).

Also note that wemust define a new signal (count)
for an output if its value is to be used within the ar-
chitecture. is is simply a quirk of VHDL.

e synthesized circuit is:

Exercise 11: Identify the components in the schematic that

were created (“instantiated ”) the different parts of the VHDL

code.

Exercise 12: Modify the diagram of the 2-bit counter by

adding a (synchronous) reset input and a 2-input, 2-bit mul-

tiplexer. Draw a block diagram showing the modified circuit.

Label the connections and i/o with appropriate signal names.

Write the corresponding VHDL description.

4

