
ELEX 3330 : Programmable Logic Devices
2016 Winter Term

Combinational Logic Design with VHDL

is lecture reviews the design of combinational logic and introduces the use of VHDL to design combinational logic.
Aer this lecture you should be able to:

• convert an informal description of the behaviour of a combinational logic circuit into a truth table, a sum of products
boolean equation and a schematic,

• convert an informal description of a combinational logic circuit into a VHDL entity and architecture,

Logic Variables and Signals

A logic variable can take on one of two values, typi-
cally called true and false (T and F). With active-high
logic true values are represented by a high (H) volt-
age. With active-low logic true values are represented
by a low (L) voltage. Variables using negative logic are
usually denoted by placing a bar over the name (B), or
an asterisk aer the variable name (B∗).

Warning: We will use or 1 and 0 to represent truth
values rather than voltage levels. However, some peo-
ple use 1 and 0 to represent voltage levels instead. is
can be very confusing.

Exercise 1: A chip has an input labelledOE that is used to turn

on (“enable”) its output. Is this input an active-high or active-

low signal? Will the output be enabled if the input is high? Will

the output be enabled if the input is 1?

To add to potential sources of confusion, an
overbar is sometimes used to indicate a logical com-
plement operation rather than a negative-true signal.
e only way to tell the difference is from the context.

Combinational Logic

A combinational logic circuit is one where the out-
put is a function only of the current input – not of
any past inputs. A combinational logic circuit can be
represented as:

• a truth table that shows the output values for
each possible combination of input values,

• a boolean equation that defines the value of each
output variable as a function of the input vari-
ables, or

• a schematic that shows a connection of hardware
logic gates (and possibly other devices) that im-
plement the circuit.

Truth Tables

For example, the truth table for a circuit with an out-
put that shows if its three inputs have an even number
of 1’s (even parity) would be:

a b c p
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1

Exercise 2: Fill in the last two rows.

Sum of Products Form

From the truth table we can obtain an expression for
each output as a function of the input variables.

e simplest method is to write a sum of products
expression. Each term in the sum corresponds to one
line of the truth table for which the desired output
variable is true (1). e term is the product of each in-
put variable (if that variable is 1) or its complement (if
that variable is 0). Each such term is called aminterm
and such an equation is said to be in canonical form.

For example, the variable p above takes on a value
of 1 in four lines (the first, fourth, sixth and seventh
lines) so there would be four terms. e first term
corresponds to the case where the input variables are
a = , b =  and c = . So the term is a b c. Note

lec1.tex 1 2016-03-29 10:24



that this product will only be true when a, b and c
have the desired values, that is, only for the specific
combination of inputs on the first line.

If we form similar terms for the other lines where
the desired output variable takes on the value one and
then sum all these terms we will have an expression
that will evaluate to one only when required and will
evaluate to zero in all other cases.
Exercise 3: Write out the sum-of-products equation for p.
Evaluate the expression for the first two lines in the table.

Common Combinational Logic Functions

In addition to the standard logic functions (AND,
OR, NOT, XOR, NAND, etc) some combinational
logic functions that are widely used include:

• amultiplexer is probably the most useful combi-
national logic circuit. It copies the value of one
of N inputs to a single output. e input is se-
lected by an N-bit input.

2
select

inputs output

• a decoder is a circuit with N inputs and N out-
puts. e input is treated as a binary number
and the output selected by the value of the in-
put is set true. e other outputs are false. is
circuit is oen used for address decoding.

select 2Noutputs
N

• a priority encoder does the inverse operation.
e N output bits represent the number of the
(highest-numbered) input line.

• adders and comparators, perform arithmetic op-
erations on inputs interpreted as binary num-
bers

output+inputs >n

n
n+1

n

n

• amemory can implement an arbitrary combina-
tional logic function – the input is the address
and the stored data is the output.

ad
dr

es
s

da
tainput output

ROM

• drivers and buffers do not alter the logical value
but provide higher drive current, tri-state or
open drain or open collector (OC) outputs

output enable

o.c.

Exercise4: Writeout the truth table and the canonical (unsim-

plified) sum-of-products expression for a 2-to-1 multiplexer.

Example: 7-segment display driver

LED numeric displays typically use seven segments
labeled ‘a’ through ‘g’ to display a digit between 0 to 9:

a

b

c
d

e

f
g

is example shows the design of a circuit that con-
verts a 2-bit number into seven outputs that turn the
segments on and off to show numbers between 0 and
3. We use the variables A and B for the two input bits
and a to g for the seven outputs. We can build up a
truth table for this function as follows:

B A a b c d e f g
0 0 1 1 1 1 1 1 0
0 1 0 1 1 0 0 0 0
1 0 1 1 0 1 1 0 1
1 1 1 1 1 1 0 0 1

From the truth table we can then write out the sum
of products expressions for each of the outputs:

2



a = AB + AB + AB
b = 1
c = AB + AB + AB
d = AB + AB + AB
e = AB + AB
f = AB
g =

Exercise 5: Fill in the last line of the table. Draw the schematic

of a circuit that implements the logic function for the ‘g’ seg-

ment.

VHDL

VHDL is a Very-complex1 Hardware Description
Language that we will use to design logic circuits.

Example 1 - Signal Assignment

Let’s start with a simple example – a type of circuit
called a both that has one output signal (c) that is
the AND of two input signals (a and b). e file
example1.vhd contains the following VHDL de-
scription:

-- 'both' : An AND gate

entity both is port (
a, b: in bit ;
c: out bit ) ;

end both ;

architecture rtl of both is
begin

c <= a and b ;
end rtl ;

First some observations on VHDL syntax:

• VHDL is case-insensitive. ere are many capi-
talization styles. I prefer all lower-case. Youmay
use whichever style you wish as long as you are
consistent.

• Everything following two dashes “--” on a line
is a comment and is ignored.

• Statements can be split across any number of
lines. A semicolon ends each statement. In-
dentation styles vary but an “end” should be in-
dented the same as its corresponding “begin”

1Actually, the V stands for VHSIC. VHSIC stands for Very
High Speed IC.

• Entity and signal names begin with a letter fol-
lowed by letters, digits or underscore (“_”) char-
acters.

A VHDL description has two parts: an entity part
and an architecture part. e entity part defines the
input and output signals for the device or “entity” be-
ing designed while the architecture part describes the
behaviour of the entity.

Each architecture is made up of one or more state-
ments, all of which “execute2” at the same time (con-
currently). is is the critical difference between
VHDL and conventional programming languages –
VHDL allows us to specify concurrent behaviour.

e single statement in this example is a signal as-
signment that assigns the value of an expression to the
output signal c. Expressions involving signals of type
bit can use the logical operators and, nand, or, nor,
xor, xnor, and not. not has higher precedence than
the other logical operators, all of which have equal
precedence. Parentheses can be used to force eval-
uation in a certain order.

From this VHDL description a program called a
logic synthesizer can generate a circuit that has the
required functionality. In this case it’s not too sur-
prising that the result is the following circuit:

Exercise 6: Write a VHDLdescription for the circuit thatwould

generate the ’a’ and ’b’ outputs for the 7-segment LED driver

shown previously.

Example 2 - Selected Assignment

e selected assignment statement mimics the oper-
ation of a multiplexer – the value assigned is selected
from several other expressions according to a control-
ling expression. e following example describes a
two-input multiplexer:

entity mux2 is
port (
a, b : in bit ;
sel : in bit ;
y : out bit ) ;

2e resulting hardware doesn’t actually “execute” but this
point of view is useful when using VHDL for simulation.

3



end mux2 ;

architecture rtl of mux2 is
begin

with sel select y <=
a when '0' ,
b when others ;

end rtl ;

which synthesizes to:

Note the following:

• the keyword others indicates the default value
to assign when none of the other values matches
the selection expression. Always include an
others clause.

• commas separate the clauses

• the synthesizer assumes active-high logic
(’1’≡H)

Example 3 - Bit Vectors

VHDL also allows signals of type bit_vectorwhich
are one-dimensional arrays of bits that model buses.
Using bit_vectors and selected signal assignments we
can easily convert a truth table into a VHDL descrip-
tion. e next example is a VHDL description of the
7-segment LED driver:

-- example 3: 7-segment LED driver for
-- 2-bit input values

entity led7 is port (
n: in bit_vector (1 downto 0) ;
seg: out bit_vector (6 downto 0) ) ;

end led7 ;

architecture rtl of led7 is
begin

with n select seg <=
"1111111" when "00" ,
"0110000" when "01" ,
"1101101" when "10" ,
"1111001" when others ;

end rtl ;

which synthesizes to:

e indices of bit_vectors can be declared to
have increasing (to) or decreasing (downto) values.
downto is preferred so that constants read le-to-
right in the conventional order.

bit_vector constants are formed by enclosing an
ordered sequence of binary or hexadecimal values in
double quotes aer a leading B (optional) or X respec-
tively. For example, B"1010_0101" and X"A5" are
equivalent.
Exercise 7: If x is declared as bit_vector (0 to 3) and

in an architecture the assignment x<="0011" is made, what is

the value of x(3)? What ifxhadbeendeclared as bit_vector
(3 downto 0)?

Substrings (“slices”) of vectors can be extracted by
specifying a range in the index expression.

Vectors can be concatenated using the ‘&’ operator.
For example y <= x(6 downto 0) & '0' would
set y to the 8-bit value of x shied le by 1 bit.
Exercise 8: Write a VHDL description that uses ‘&’ to assign y
a bit-reversed version of a 4-bit vector x.

e logical operators (e.g. and) can be applied to
bit_vectors and operate on a bit-by-bit basis.
Exercise 9: Write a VHDL description for a 2-to-4 decoder us-

ing a 2-bit input and a 4-bit output.

4


