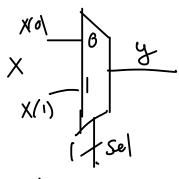

Lecture 3 - Hierarchical Design in VHDL

Exercise 1: Why is there no library statement in the second example?

Exercise 2: If this code was analyzed, what information would be saved? Where?

Exercise 3: Label the connections within the parity generator schematic with the signal names used in the architecture.

	Use	when	
	interge	—constants — add I, mult. by?	M
Ars, and	Unsigned or signed	if doing arithmetic	logy to vect
7	std_logic vector	all else	rts


Exercise 4: What is the type of the constant X"1A_0002"?

(b) What is the purpose of the to_unsigned() function in the last line of the above example? What conversion function(s) would you need to use if rladdr was declared to be of type bit_vector?

- (b) to_unsigned() is the wrong function.

 The type of rladdr is std logic vector. The type of r1addr is std_logic_vector so the correct conversion function is unsigned().
 - unsigned(to_stdlogicvector(r1adr)) (note that there are no underscores -- the names of the conversion functions are inconsistent and you will need to refer to the lecture notes, the quick-reference card or the IEEE 1164 library sources typically in c:\altera\15.0\quartus\libraries\vhdl\ieee\1993)

Exercise 5: Write a conditional assignment that models a 2-to-1 multiplexer. Use an array x as the input, a signal sel to select the input and a signal y as the output. Repeat for a 4-to-1 multiplexer (sel is now an array).

$$y \ll x(0)$$
 when $sel = 01$ else $x(1)$