
ELEX 3330 : Programmable Logic Devices
2016 Winter Term

Traffic Light Controller

Introduction

In this lab you will design a traffic light controller for
the intersection atWillingdon Avenue and Sanderson
Way. is intersection has a le-turn lane and pedes-
trian crossings.

Specifications

e diagram below shows the layout of the intersec-
tion. We will only include the westbound pedestrian
crossing across Willingdon.

Sanderson Way

W
ill

in
gd

on
 A

ve

P

S

E

N

L

B

Inputs and Outputs

e four signals are labelled for the traffic flow they
control: N(orth), S(outh), E(ast) and P(edestrian).
Each signal has two, three or four lamps labelled
by colour or direction (R(ed), Y(ellow), G(reen) and

L(e)). ere are two sensors: an induction loop
(L) in the road that detects cars waiting to turn le
northbound onWillingdon and a pushbutton (B) that
pedestrians push to indicate they want to cross the
road.

Your design will control the lamps through a 12-bit
output declared std_logic_vector (11 downto
0) with active-high signals ordered (le-to-right):
NR NY NG NL ER EY EG SR SY SG PR PG .

Your design will sense the button and loop through
a 2-bit input declared std_logic_vector (1
downto 0): with active-high signals ordered (le-
to-right): B L. e loop signal is active when there is
a car stopped above the loop. e button signal is ac-
tive only when the button is being pushed (your de-
sign will have to “remember” if it was pushed).

Operation

To avoid collisions only some combinations of lights
are allowed. e combinations and the lit lamps are:

• NB - allows northbound traffic to go le or north:
NG, NL, ER, SR, PR.

• NSB - allows north/southbound traffic: NG, ER, SG,
PR.

• EB - allows eastbound traffic: NR, EG, SR, PG.

Signalsmust transition from green to yellow before
turning red to allow cars time to stop. us there are
three more combinations where Y is substituted for G
(and NL is off and PR is on).

e intersection normally transitions from EB to
NSB and back with yellow signals in-between. How-
ever, when a northbound car is waiting to turn le the
intersection will transition from EB toNB and then to
NSB.

e NSB condition ends aer 6 seconds. NB ends
aer 3 seconds. EB ends aer 6 seconds but if B was
pushed then it should end aer 10 seconds (this al-
lows pedestrians enough time to cross the road). Yel-
low signals end aer 1 second.

lab4.tex 1 2016-04-19 08:40



Pre-Lab

State Machine Design

Determine the number of states required to imple-
ment the intersection controller and the values of the
output signals for each state. As per course guide-
lines, all outputs must be the outputs of registers (be
“registered”). Refer to the state machine design in-
structions in the lecture notes if necessary.

Assign names to the states and prepare a table
showing showing the lamps output values for each
state.

Draw a state transition diagram labelled with state
names. e state transitions should be labelled with
the conditions that must be met to cause the transi-
tion. ese could be combinations of: active inputs,
other state machine states or time elapsed time in the
current state.

You may use another state machine to capture but-
ton pushes. is state machine may have an output
(e.g. W(aiting)) that may be used as state transition
condition in the above state machine.

VHDL Implementation

Your design will interface to a virtual control panel
running on the PC by instantiating a component sup-
plied by the instructor:

clock_50

enable

clock

lamps

sensors

clock_50

lab4guimylab4
2

12

1

1

1
key(0) reset_n

where mylab4 is your top-level entity and the
lab4gui component is declared as follows:

-- interface to the virtual hardware and clocks
component lab4gui is

port (
sensors : out std_logic_vector(1 downto 0);
lamps : in std_logic_vector (11 downto 0);
clock : out std_logic ; -- 10 kHz clock
enable : out std_logic ; -- 1 pulse-per-second
clock_50 : in std_logic -- 50 MHz clock

);
end component ;

is component is declared in a package called
lab4pkg. To use the component it is sufficient to put:

use work.lab4pkg.all ;

before your entity declaration.
e component has a 50 MHz clock input that

must be supplied from the clock_50 input to your
top-level entity. You must use the component’s
10 kHz clock output as your clock signal. You may
use the enable signal, which is high for one clock cy-
cle every second, to simplify your design.

Your design should use the key(0) input as an
active-low reset input, reset_n that forces the con-
troller to EB.

Submit a report in PDF format to the appropriate
dropbox on the course web site containing the fol-
lowing: the usual identification information, the state
ouputs table, the state transition diagram described
above, and VHDL code that implements your design.

Procedure

Follow the instructions in Lab 1 but add the following
step before compiling your code:

• download lab4.zip from the course web site and
extract the contents into your project folder. en
select Project > Add/Remove Files in Project... and
add the file lab4gui.vhd to your project.

Aer the FPGA is programmed, double-click on
the lab4gui .bat file to start the user interface and
test your design. Check: (1) normal cycling through
the states, (2) that the green light duration is extended
when you push the ‘walk’ button, and (3) that the “ad-
vanced green” state is used when cars are waiting to
turn le northbound on Willingdon.

Lab Report

Use the report instructions in the previous lab. Sam-
ple flow summaries and schematics are shown below.

2



=

Equal4
A[11..0]

B[11..0]12'h392
OUT

next_state~29

next_state~[28..17]
0

112'h512

next_state~16

next_state~[41..30]
0

112'h492

=

Equal3
A[11..0]

B[11..0]12'h286
OUT

next_state~42

next_state~[83..72]
0

112'h49c

=

Equal1
A[4..0]

B[4..0]5'h6
OUT

=

Equal5
A[4..0]

B[4..0]5'h3
OUT

=

Equal6
A[11..0]

B[11..0]12'h48a
OUT

=

Equal0
A[11..0]

B[11..0]12'h831
OUT

next_state~57

next_state~[54..43]
0

112'h8c1

next_state~[70..59]
0

112'h614

=

Equal2
A[4..0]

B[4..0]5'ha
OUT

next_state~0
next_state~2

next_state~3

next_state~56
next_state~58

=

Equal9
A[11..0]

B[11..0]12'h492
OUT

next_state~[15..4]
0

112'h4a1

next_state~71

next_state~1

next_waiting
0

11'h1 next_state~55

+

Add0
A[4..0]

B[4..0]5'h1
OUT[4..0]

=

Equal7
A[4..0]

B[4..0]5'h1
OUT

next_waiting
0

11'h0

lab4gui:gui0

clock_50

lamps[11..0]

clock

enable

sensors[1..0]

waiting

D

CLK

Q

t[4..0]

D

CLK

Q

=

Equal10
A[11..0]

B[11..0]12'h852
OUT

next_t~[4..0]
0

1

next_t[4..0]
0

15'h0

=

Equal8
A[11..0]

B[11..0]12'h852
OUT

clock_50

key[0..0]

next_state[11..0]
0

112'h831

state[11..0]

D

CLK

Q

=

Equal11
A[11..0]

B[11..0]
OUT

1

1

Hints and FAQs

Q: What types should I use for my signals?

A: If it’s something you count (like seconds), use
unsigned. If it’s something that’s true or false (like
sensor and lamp values), use std_logic[_vector].
If it’s something that can be one of several choices, use
an enumerated type. Don’t use bit[_vector] any
more. For example:

signal t, next_t : unsigned (4 downto 0) ;
signal waiting, next_waiting : std_logic ;
...
subtype states is std_logic_vector (11 downto 0) ;
signal state, next_state : states ;
...
constant EBY : states := "100001010010" ;
...
alias L is sensors(0);
alias reset_n is key(0);

Note that in this case I’ve used std_logic_vector
rather than an enumerated type for the states because
the state values are also the output values (a rule in
this course). Aliases and the ‘subtype’ are a con-
venient way to specify shorter or more meaningful
names for other signals.

Q: Give me a hint, please.

A: A simple solution consists of one component in-
stantiation (lab4gui) and three state machines:

• one to keep track of whether the pedestrian button
has been pushed

• one to keep track of how many seconds have
elapsed in the current state

• one to select the next state (which is the same as the
lamp output value) based on: (i) the current state,
(ii) the elapsed time in the current state, (iii) the
current loop sensor input and (iv) whether a pedes-
trian has pushed the button

Each state machine requires one conditional assign-
ment statement and one unconditional assignment
inside a process statement. See below.

Q: Howdo I “remember” that the pedestrian button
has been pushed?

A: Use a flip-flop that is set when the button is
pushed and reset when leaving the pedestrian cross-
ing state. For example:

-- state update:
next_waiting <=

'0' when next_state = EBY else
'1' when B = '1' else
waiting ;

...
-- in your process:

waiting <= next_waiting ;

Q: How do I keep track of how much time has
elapsed in a state?

A: Use a register that is set to zero when the state
changes and is incremented once per second (e.g.
when a 1 pps1 enable is active) otherwise. For exam-
ple:

-- state update:

1pulse per second

3



next_t <=
to_unsigned(0,t'length) when next_state /= state else
t + 1 when enable = '1' else
t ;

...
-- in your process:

t <= next_t ;

Q: How can I code the state transition rules?

A: You could use a conditional assignment such as:

next_state <=
NB when state = EBY and t = 1 and L = '1' else
... else
state ;

Q: What signals do I need to include in my entity
declaration’s port clause? What signal names should
I use?

A: For this lab, the 50 MHz signal from the oscil-
lator on the DE0-Nano board and the key(0) but-
ton. Connect the clock_50 signal directly to the
lab4gui’s clock_50 input and use key(0) as an
active-low reset.
You must use the same signal names (clock_50,
key) that are used in the settings file
(DE0_NanoX3330.qsf). Using the wrong sig-
nal name or not importing the settings file will result
in dimly-lit LEDs and nothing else.

Q: Can you give me an example of a state transition
diagram?

A: Different styles may be appropriate for different
readers. In the following (partial) example the state
names and transition conditions are taken from the
VHDL code:

NB

EB

NSB

a
EBY

a: (W=’1’ and T=10) or (W=’0’ and T=6)
b: T=1 and L=’0’

b

c

c: T=1 and L=’1’

Using descriptive state names (“Northbound Traffic”)
and transition conditions (“walk button not pushed
and 10s timeout”) is also acceptable. You do not have
to show that transitions happen on clock edges (al-
ways the case in this course) or that the default transi-
tion is remain in the same state (this can be assumed).

Q: Should I use the code above into my solution?

A: ese are just examples meant to help you figure
out your own solution.

Q: Why are none of the lights on? All of my states
have at least one light turned on for each signal!

A: Did you reset your circuit? If not, the state regis-
ter powers upwith value 0 resulting in all of the lamps
being off.

Q: Why does the FPGA programmer say ‘Failed’? It
worked the first time!

A: e JTAG interface used to program the FPGA
is also used by the GUI soware. You must quit
the lab4gui program before (re-)programming the
FPGA.

Q: How could the design be improved?

A: e RTL netlist shows many 5-bit comparators
to test the elapsed time and 12-bit comparators to test
the current state. e design might be improved by
using a down-counter that is initialized on entry to
the state and a different state encoding (for example,
you could use ‘one-hot’ state variables that do not ap-
pear in the output).

Q: What should I do before the lab to maximize my
chances of completing it?

A: You should: (a) ask about anything in the Lab
instructions that is not clear, (b) complete and sub-
mit the Pre-Lab report and (c) have VHDL code that
compiles without syntax errors.

4


