
ELEX 3330 : Programmable Logic Devices
2016 Winter Term

Timers and Counters in VHDL

Introduction

In this lab you will practice using unsigned types
and components by implementing a circuit that in-
crements a displayed value once per second.

Clock Divider

A clock divider is a circuit that generates a signal that
is asserted once every N clock cycles. is signal can
be used as a condition for state transitions so that they
happen at the desired rate1. An example of the clock
and output (“enable”) waveforms for N =  is:

GPSGO

IREFPI � � � �� � � �

eclock divider state transition diagrambelow la-
bels states with the value of the output and the num-
ber of clock cycles remaining until it is asserted:

��
2��

��
2��

��
2��

��
��

��
��

VIWIX

IR IR IR

�

e output is only asserted (‘1’) for the state in which
the count is zero. e state transition conditions are:

• if the reset input is asserted or the count is zero, re-
turn to the first state

• else transition to the next state by decrementing the
count value.

Implementing the clock divider requires one flip-
flop 2 for the output and a register to count clock pe-
riods. We use a binary number corresponding to the
number of clock cycles remaining before the output
is asserted 3.

1Note that this output is not a clock.
2According to the design rules for this course which require

registered outputs.
3Other encodings such as one-hot, binary and LFSR are also

commonly used.

e VHDL for a clock divider is given on the
course web site. You can use this code to instantiate
a clock divider for your design and as an example of
how to implement a state machine using unsigned
values.

PLL Clock Generator

e clock for this design will be generated by a com-
ponent on the FPGA called a phased-locked loop
(PLL).e input to this component is a 50MHz clock
supplied by an oscillator on the DE0-Nano board.
e output is a 10 kHz clock.

e VHDL to instantiate a PLL is normally gener-
ated using the Quartus II “MegaWizard Plug-inMan-
ager”. To save time the VHDL required to instantiate
the PLL is given on the course web site.

Requirements

Your circuit will have the same pushbutton inputs and
LED outputs as previous labs. In addition it will have
a clock input, clock_50, from the 50 MHz oscillator
on the DE0-Nano board.

e behaviour of your circuit should be as follows:
If KEY0 is released at any time the circuit should be
reset. When the circuit is reset the binary value N
should be displayed on LED4 through LED0. While
KEY0 is pressed the count value should increment
once per second until it reachesN and then hold that
value.

N should be the least significant digit of your BCIT
ID plus 1. N should be the second least-significant
digit of your student number plus 12. For example,
for the ID A00123456 N =  and N = .

Structure

Your top-level entity should declare and use the fol-
lowing two components:

• clock: a PLL which supplies the clock for your de-
sign. It has a 50 MHz input and a 10 kHz output.

lab3.tex 1 2016-04-12 10:11

• divider: a clock divider whose output is asserted
once per second so your count can increment at
that rate. It also has clock and reset inputs.

You candeclare these components in your top-level
architecture, before begin, as:

component clock is
port (inclk0 : in std_logic ; c0 : out std_logic);

end component ;

component divider is
port (clock, reset: in std_logic ;

enable: out std_logic) ;
end component ;

Your design should instantiate these components
and “connect” them to appropriate signals in the body
of the architecture using port map. A block diagram
of the overall design is:

GPSGO

VIWIX
OI]��

IREFPI
PIH���HS[RXS��
��]SYV�

HIWMKR
GPSGOC��

HMZMHIV

GPSGO

PEF�

Use the std_logic_1164 and numeric_std
packages from the IEEE library. Use only the
std_logic, std_logic_vector and unsigned
types. Constants may be of any type.

You may use selected, conditional or uncondi-
tional assignment statements, any arithmetic or logi-
cal operations and any number of additional signals.
You must follow the course restriction on process
statements4.

Do not use the output of the clock divider as a
clock.

Instructions

Use the instructions in Lab 1 but add the following
before compiling your code:

• download lab3.zip from the course web site and
extract the contents into your project folder. en
select Project > Add/Remove Files in Project... and
add the filesclock.vhd anddivider.vhd to your
project.
4Only a single if statement allowed, see the lecture notes for

details.

Pre-Lab Report

Submit a pre-lab report in PDF format to the appro-
priate dropbox on the course web site. e report
should contain the required identification informa-
tion plus the following:

• a state transition diagram for your top-level code
showing with the outputs for the states and the
transitions labelled with the input condition(s).
Youmay omit intermediate states as long as the first
two (N, N + ) and last two states (N − , N) are
shown. You may simplify the state transition con-
ditions.

• A listing of VHDL code that implements a solution
to the requirements above.

Lab Report

Submit a lab report in PDF format to the appropriate
dropbox on the course web site. e report should
contain the required identification information plus
the following:

• your VHDL code with all errors corrected
• a screen capture of the Flow Summary showing the
number of logic elements, registers and PLLs used.
For example:

• the block diagram produced by running Tools >
Netlist Viewers > RTL Viewer. For example:

+

Add0
A[4..0]

B[4..0]5'h1
OUT[4..0]

count_next~[4..0]
0

1

count_next~[9..5]
0

15'h1e

led[7..0]

clock:clock0

inclk0 c0 =

Equal0
A[4..0]

B[4..0]5'hf
OUT

clock_50

count_next[4..0]
0

15'h8

divider:divider0

clock

reset

enable

count[4..0]

D

CLK

Q

key[1..0]

0:
4

Bonus marks may be awarded for the design that is
themost concise (fewest statements), smallest (fewest
logic elements) and clearest (easiest to understand).

2

