
ELEX 3330 : Programmable Logic Devices
2016 Winter Term

Solutions to Final Exam

Question 1

ere were three versions of this question. Each de-
signwas a synchronous counterwith reset. e values
of the two outputs are determined by the counter and
input values. For versions 1 and 2 the reset is reset
and the clock is oneml or tick. For version 3 the
timer is reset when the drogue output is not asserted
and the clock is clock. Sample entities and architec-
tures for the three versions are given below.

For version 1 the counter is 9 bits wide and the
slow and done outputs are set high whenever the
count ismore than 400 and 502 respectively (since the
counter is reset for the first two ml):

to filling
machine

slow

done

reset

oneml

controller

 flow
sensor

 level
sensor

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity controller1 is

port (
reset, oneml : in std_logic;
slow, done : out std_logic);

end controller1;

architecture rtl of controller1 is

signal level, next_level : unsigned (8 downto 0);

begin

next_level <=
to_unsigned(0,level'length) when reset = '1' else
level + 1 ;

process (oneml)
begin

if oneml'event and oneml = '1' then
level <= next_level ;

end if;
end process;

slow <= '1' when level >= 400 else '0' ;
done <= '1' when level >= 500 else '0' ;

end rtl;

For version 2 the counter is 8 bits wide and the
light and full outputs are set high whenever the
count ismore than 200 and 250 respectively (since the
counter is reset for the first two meters):

to brakes
light

full

reset

tick

controller

wheel
sensor

position
 sensor

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity controller2 is

port (
reset, tick : in std_logic;
light, full : out std_logic);

end controller2;

architecture rtl of controller2 is

signal dist, next_dist : unsigned (7 downto 0);

begin

next_dist <=
to_unsigned(0,dist'length) when reset = '1' else
dist + 1 ;

process (tick)
begin

if tick'event and tick = '1' then
dist <= next_dist ;

end if;
end process;

light <= '1' when dist >= 200 else '0' ;
full <= '1' when dist >= 250 else '0' ;

end rtl;

For version 3 the counter is 3 bits wide. e
drogue output is asserted when safe_n is high and
either barhi or barlo are high. main is asserted if
drogue is asserted or the count is more than 5. An
internal version of the drogue output is used to avoid
reading an output signal.

examsol.tex 1 2016-05-27 19:46

barhi

barlo

safe_n

clock
main

drogue

controller

to
parachute

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity controller3 is

port (
barhi, barlo, safe_n, clock : in std_logic;
drogue, main : out std_logic);

end controller3;

architecture rtl of controller3 is

signal delay, next_delay : unsigned (2 downto 0);
signal drogue_i : std_logic;

begin

drogue_i <= safe_n and (barhi or barlo) ;

next_delay <=
to_unsigned(0,delay'length) when drogue_i = '0' else
delay + 1 ;

process (clock)
begin

if clock'event and clock = '1' then
delay <= next_delay ;

end if;
end process;

main <=
'1' when safe_n = '1' and

(drogue_i = '1' or (delay > 5)) else
'0' ;

drogue <= drogue_i ;

end rtl;

Question 2

e three solutions are very similar. Each
schematic consists of a synchronous counter
that is set/reset/incremented by two control signals.

e VHDL code corresponding to:

D Q
16

cnt_out

16

x"8000"

-1
16

down

set

clk

0

1

1

0 16

is:

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity question2a is

port (
down, set, clk : in std_logic;
cnt_out : out unsigned (15 downto 0));

end question2a ;

architecture rtl of question2a is

signal cnt, next_cnt : unsigned (15 downto 0);

begin

next_cnt <=
x"8000" when set = '1' else
cnt - 1 when down = '1' else
cnt ;

process (clk)
begin

if clk'event and clk = '1' then
cnt <= next_cnt ;

end if;
end process;

cnt_out <= cnt ;

end rtl;

e VHDL code corresponding to:

D Q
16

cnt_out

16

x"0000"

+1
16

up

reset

clk

0

1

1

0 16

is:

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity question2b is

port (
down, reset, clk : in std_logic;
cnt_out : out unsigned (15 downto 0));

end question2b ;

architecture rtl of question2b is

signal cnt, next_cnt : unsigned (15 downto 0);

begin

2

next_cnt <=
x"0000" when reset = '1' else
cnt + 1 when down = '1' else
cnt ;

process (clk)
begin

if clk'event and clk = '1' then
cnt <= next_cnt ;

end if;
end process;

cnt_out <= cnt ;

end rtl;

e VHDL code corresponding to:

D Q count
+1

up

clk

0

1

1

0 8

-1

down

8
8 8

8

is:

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity question2c is

port (
up, down, clk : in std_logic;
count : out unsigned (7 downto 0));

end question2c ;

architecture rtl of question2c is

signal cnt, next_cnt : unsigned (7 downto 0);

begin

next_cnt <=
cnt - 1 when down = '1' else
cnt + 1 when up = '1' else
cnt ;

process (clk)
begin

if clk'event and clk = '1' then
cnt <= next_cnt ;

end if;
end process;

count <= cnt ;

end rtl;

Question 3

A schematic for the following VHDL code:

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

architecture rtl1 of exam is
signal sig, sig_next : unsigned (7 downto 0) ;
signal rst, add, clk : std_logic ;

begin

sig_next <=
x"00" when rst = '1' else
sig+1 when add = '1' else
sig ;

process(clk)
begin

if clk'event and clk = '1' then
sig <= sig_next ;

end if ;
end process ;

end rtl1 ;

might be:

D Qadd

rst

clk

x"00"

+1

1

0
1

0

sigsig_next
88

8

8

A schematic for the following VHDL code:

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

architecture rtl2 of exam is
signal sig, sig_next : unsigned (7 downto 0) ;
signal rst_n, sub, clk : std_logic ;

begin

sig_next <=
x"FF" when rst_n = '0' else
sig-1 when sub = '1' else
sig ;

process(clk)
begin

if clk'event and clk = '1' then
sig <= sig_next ;

end if ;
end process ;

end rtl2 ;

3

might be:

D Qsub

rst_n

clk

x"FF"

-1 1

0

1

0

sigsig_next
88

8

8

A schematic for the following VHDL code:

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

architecture behav of exam is
signal wave, waven : unsigned (14 downto 0) ;
signal set, up, tick : std_logic ;

begin

waven <=
to_unsigned(1234,15) when set = '1' else
wave+2 when up = '1' else
wave ;

process(tick)
begin

if tick'event and tick = '1' then
wave <= waven ;

end if ;
end process ;

end behav;

might be:

D Qup

set

tick

1234

+2

1

0
1

0

wavewaven
1515

15

15

4

