
ELEX 3330 : Programmable Logic Devices
2016 Winter Term

Solutions to Assignment 2

Question 1

e schematic is shown below. Following the con-
ventions used in the course notes, the selected as-
signment is drawn as a singlemulti-inputmultiplexer
and the conditional assignment is drawn using a two-
input multiplexer. Other symbols could be used for
the comparison and logic functions as long as the
meaning was unambiguous.

D Q

D Q

x

c

b

d

1

0

a<b
a

b5

y

8 8

3 3111

000

others

000
111
010 3a

a>b
a

b

127

y
z

1

0

y
z

0255

2

c
x

1
8

0

1

0

1

a

Question 2

e VHDL consists of one selected assignment and
one process statement to instantiate the m register:

library ieee;
use ieee.std_logic_1164.all;

entity sol2q2 is
port (

clock : in std_logic ;
h : out std_logic ;
m : out std_logic_vector (2 downto 0) ) ;

end sol2q2;

architecture rtl of sol2q2 is
signal x : std_logic_vector (3 downto 0) ;
signal m_q : std_logic_vector (2 downto 0);

begin

h <= x(3) ;
m <= m_q ;

with m_q select
x <=
x"2" when "000",
x"4" when "001",
x"8" when "100",
x"F" when others;

process(clock)
begin

if clock'event and clock = '1' then
m_q <= x(2 downto 0) ;

end if ;
end process ;

end rtl ;

Question 3

e corresponding VHDL is:

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity sol2q3 is
port (

hirate, hold, safe, run, c10k : in std_logic ;
freq : out unsigned (11 downto 0) );

end sol2q3;

architecture rtl of sol2q3 is
signal freq_q, next_freq : unsigned (11 downto 0);

begin

next_freq <=
to_unsigned(0,freq_q'length) when (not ( safe = '1' and run = '1' ) ) else
freq_q when hold = '1' else
freq_q * 2 when hirate = '1' else
freq_q + 1 ;

process(c10k)
begin

if c10k'event and c10k = '1' then
freq_q <= next_freq ;

end if ;
end process ;

freq <= freq_q ;

end rtl;

Question 4

e state transition diagram is shown below where
the least-significant bit of the state represents on and
the most-significant bit is fast:

00 01 11

c
c

a b

a: start,  b: speed, 
c: stop and not start

e corresponding VHDL code is:

library ieee;
use ieee.std_logic_1164.all;

entity sol2q4 is
port (

start, stop, speed : in std_logic;
clock : in std_logic ;
on_out, fast : out std_logic);

end sol2q4;

architecture rtl of sol2q4 is

sol2.tex 1 2016-05-19 22:52



signal state, next_state : std_logic_vector (1 downto 0) ;
begin

on_out <= state(0) ;
fast <= state(1) ;

next_state <=
"01" when state = "00" and start = '1' else
"11" when state = "01" and speed = '1' else
"00" when stop = '1' and start = '0' else
state ;

process (clock)
begin

if clock'event and clock = '1' then
state <= next_state ;

end if;
end process;

end rtl;

A missing clock input was added and the name
of the on output was changed to on_out because on
is a reserved word in VHDL. To make the code more
compact (at the cost of some readability) I used a 2-bit
state variable instead of an enumerated type.

Question 5

Here is a simple solution for a resettable clock di-
vider that outputs a 2-period-long output once every
20 clock periods:

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity sol2q5 is
port (

clk, reset_n : in std_logic;
pulse2 : out std_logic);

end sol2q5;

architecture rtl of sol2q5 is
signal count, next_count : unsigned (4 downto 0);
signal next_pulse2 : std_logic;

begin

next_count <=
to_unsigned(0,count'length) when reset_n = '0' or count = 19 else
count + 1 ;

next_pulse2 <=
'1' when count = 18 or count = 19 else
'0' ;

process (clk)
begin

if clk'event and clk = '1' then
count <= next_count ;
pulse2 <= next_pulse2 ;

end if;
end process;

end rtl;

Note that we register the output so that it is glitch-
free. It is now delayed by one clock period relative to
the value of count. e simulation results are:

Many other solutions are possible:

• since it’s oen simpler for hardware to check for
a value of 0 (and 1) the implementation might be
simpler if we counted down from 19 instead of
counting up from 0,

• we might (or might not) get a simpler implemen-
tation by using a divide-by-2 stage followed by a
divide-by-10 (or even divide by-2, -2 and -5) – all
synchronous, of course,

• a 5-bit linear-feedback shi-register would replace
the adder with an xor gate,

• a one-hot encoding with twenty flip-flops might be
the fastest implementation on an FPGA (although
probably requiring more hardware).

• at very high speeds (but not in this course) we
might use a ripple counter.

Question 6

In the following solution I used an enumerated type
instead of std_logic_vector values for the state.
e outputs are:

State G Y
A 1 0
B 1 1
C 0 0

e VHDL code is as follows:
library ieee;
use ieee.std_logic_1164.all;

entity controller is
port ( en, f, clk : in std_logic ;

G, Y : out std_logic ) ;
end controller ;

architecture rt of controller is

type states is (A, B, C) ;
signal state, next_state : states ;
signal next_G, next_Y : std_logic;

begin

next_state <=
A when state = B and f = '1' and en = '1' else
A when state = C and en = '1' else
B when state = A and en = '1' else
C when state = B and en = '1' else
state ;

next_G <= '1' when next_state = A or next_state = B else '0' ;
next_Y <= '1' when next_state = B else '0' ;

process (clk)
begin

if clk'event and clk = '1' then
state <= next_state ;
G <= next_G ;
Y <= next_Y ;

end if;
end process;

end rt;

2

https://en.wikipedia.org/wiki/Linear-feedback_shift_register
https://en.wikipedia.org/wiki/One-hot

