
ELEX 3330 : Programmable Logic Devices
2016 Winter Term

Assignment 1 Solutions

Question 1

(a) We can label the signals in the schematic as fol-
lows:

D Q D Q

clock

input outputD Q

a1

a0

x

and write the following VHDL to implement it:

library ieee;
use ieee.std_logic_1164.all ;

entity sol1q1 is
port (

input, clock : in std_logic;
output : out std_logic);

end sol1q1;

architecture rtl of sol1q1 is
signal a0, a1, x : std_logic;

begin

x <= not a1 and a0 ;
-- or:
-- x <= '1' when a1='0' and a0='1' else '0' ;

process (clock)
begin -- process

if clock'event and clock = '1' then
a1 <= input ;
a0 <= a1 ;
output <= x ;

end if;
end process;

end rtl;

which gives the simulation results shown on the
last page.

Note that the order of signal assignments in the
process doesn’t matter – all take effect simultane-
ously at the end of the process.

(b) We can replace the assignment statementwith the
conditional assignment:

x <= '1' when a1='0' and a0 = '1' else '0' ;

and since a conditional assignment corresponds
to amultiplexer we can draw the schematic as fol-
lows:

D Q D Q

clock

input outputD Q
a1 a0

1

0
a1=0 and a0=1

1

0
x

(c) is circuit detects a change in the input from
high to low, in other words, a falling edge.

e input is “registered”which adds a delay of be-
tween 0 and one clock cycle (it’s a half cycle in the
simulation above). e output is also registered
which results in an additional delay of one clock
cycle in detecting the falling edge.

Note that if I had used an xor gate instead of an
inverter and and gate (as hinted at in the ques-
tion), the circuit would be able to detect both ris-
ing and falling edges.

Question 2

(a) e design of a state machine to determine the
direction of motion is done using the 3-step ap-
proach described in the Lecture 2 notes:

Step 1: Determine inputs and outputs. As
stated in the question, the inputs are the quadra-
ture encoder outputs A and B, and the output is
right indicating motion toward the right.

Step 2: Determine state variables. Registered
outputs should be used as state variables and
therefore right will be a state variable. It will
have possible values 0 (moving le) and 1 (mov-
ing right).

It doesn’t seem possible to determine the direc-
tion of motion given only the previous direction
(the value of right) and the two inputs (A and
B) so we’ll add additional state variables.

sol1.tex 1 2016-05-01 09:25

Based on the question, the behaviour of the
state machine depends on the history of the in-
puts (i.e., which input changed first). To detect
changes in an input we need to have access to the
previous value as well as the current value. We
can save the previous values of either input using
flip-flops as shown in the first question.

Step 3: State transition conditions. According
to the problem description, the right output
(state) should be set true if “A goes high before
B.”We can do this by testing A when B goes high.
If A is already highwhen B goes high thenAwent
high (changed) before B andwe aremoving right.
We can determine when B goes high by compar-
ing the current and previous values of B. It there-
fore appears we might only need one additional
state variable, the previous value of B which we’ll
label b0.

e state transition condition is simply that when
there is a rising edge on B (b0=0 and B=1) we set
right=A.

It’s easiest to draw this as two separate state ma-
chines, one for detecting rising edges on B and
one for changing the right output:

0 1

B=1

B=0

0 1

B0=0 and B=1
 and A=1

B0=0 and B=1
 and A=0

b0 state
machine

right state
 machine

although we could combine the two into one:

00

10

B=1 B=0
and A1=1

01

11

B0=0 and B=1
 and A=1

B0=0 and B=1
 and A=0

note: MS bit is B0, LS bit is right

B=1
and A=0B=0

(b) e corresponding VHDL is shown below. Un-
fortunately, right is a reserved word in VHD so

I’ve used right_out as the output signal name.
I’ve used another signal, output, in the architec-
ture since the value of an output port signal can-
not be used inside the architecture.

It is good practice to register all inputs (for rea-
sons that will be explained later). In this case we
would have to use flip-flops on both the A and B
inputs. e solution where both inputs are regis-
tered is shown commented out below.

e VHDL code and simulation results are given
on the last page.

library ieee;
use ieee.std_logic_1164.all ;

entity sol1q2 is
port (

a, b, clock : in std_logic;
right_out : out std_logic);

end sol1q2;

architecture rtl of sol1q2 is
signal b0, output, next_output : std_logic;
-- signal a1, b0, b1, output, next_output : std_logic;

begin

next_output <= a when b0 = '0' and b = '1' else output ;
-- next_output <= a1 when b0 = '0' and b1 = '1' else output ;

process (clock)
begin

if clock'event and clock='1' then
b0 <= b ;
-- a1 <= a ;
-- b1 <= b ;
-- b0 <= b1;
output <= next_output ;

end if;
end process;

right_out <= output ;

end rtl;

We could improve the resolution of the quadra-
ture encoder by considering both rising and
falling edges of both signals but this is not re-
quired by the question.

Question 3

(a) e state machine controls which bit of the par-
allel output is to be loaded with the serial input.
is means there must be at least 6 states where
we store the input bit (labelled 0 to 5 below) and
a state where all bits have been filled and none of
the bits should be changed. is state is labelled
‘w’.

0 1 2 3 4 5

sync=1

sync=0 sync=0 sync=0 sync=0 sync=0
w

sync=0

2

(b) ree possible solutions are shown as three archi-
tectures for the same entity.

e solution in architecture rtl1 uses a condi-
tional assignment for each output bit to update
that bit only in the appropriate state. is solu-
tion could be made much less verbose if we had
used a VHDL feature (for...generate) that
we have not covered.

e second solution uses a 7x1-bit array tomodel
a RAMand an unsigned state variable that spec-
ifies the RAM address to be written. To simplify
the design we use a 7-bit RAM and write all bits
following the 6’th bit to an (unused) bit 6.

e third solution uses a bit mask approach. e
state variable is a 6-bit std_logic_vector vari-
able where each state has a ‘1’ only in the position
that is to be filled with the serial input data. e
state is reset to “000001” and shied le on each
clock. Aer six clock edges the value will be zero
and no more input bits will be stored.

Many other solutions are possible.

e VHDL code and the simulation results for
the three architectures is given below.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity sol1q3 is
port (

sin, sync, clock : in std_logic;
pout : out std_logic_vector (5 downto 0));

end sol1q3 ;

-- solution using individual conditional assignments

architecture rtl1 of sol1q3 is

signal p, next_p : std_logic_vector (5 downto 0) ;
signal state, next_state : unsigned (3 downto 0);

begin

next_state <=
to_unsigned(0,state'length) when sync = '1' else
state + 1 when state /= 6 else
state ;

next_p(0) <= sin when state = 0 else p(0) ;
next_p(1) <= sin when state = 1 else p(1) ;
next_p(2) <= sin when state = 2 else p(2) ;
next_p(3) <= sin when state = 3 else p(3) ;
next_p(4) <= sin when state = 4 else p(4) ;
next_p(5) <= sin when state = 5 else p(5) ;

process(clock)
begin

if clock'event and clock='1' then
state <= next_state ;
p <= next_p ;

end if ;
end process ;

pout <= p ;

end rtl1;

-- solution using an array (7x1 RAM)

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

architecture rtl2 of sol1q3 is

signal p : std_logic_vector (6 downto 0) ;
signal state, next_state : unsigned (3 downto 0);

begin

next_state <=
to_unsigned(0,state'length) when sync = '1' else
state+1 when state /= 6 else
state ;

process(clock)
begin

if clock'event and clock='1' then
state <= next_state ;
p(to_integer(state)) <= sin ;

end if ;
end process ;

pout <= p(5 downto 0) ;

end rtl2;

-- solution using a bit mask

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

architecture rtl3 of sol1q3 is

signal p, next_p, state, next_state :
std_logic_vector (5 downto 0) ;

begin

next_state <=
"000001" when sync = '1' else
state(4 downto 0) & "0" when state /= "000000" else
state ;

next_p <=
(p or state) when sin = '1' else
(p and not state) ;

process(clock)
begin

if clock'event and clock='1' then
state <= next_state ;
p <= next_p ;

end if ;
end process ;

pout <= p ;

end rtl3;

3

4

