ELEX 3330 : Programmable Logic Devices
2016 Winter Term

Assignment 1 Solutions

Question 1

(a)

(b)

We can label the signals in the schematic as fol-
lows:

/x

\ D QDoutput
a0

al\

input>—pDb Q D Q

| |]

clock™>

and write the following VHDL to implement it:

library ieee;
use ieee.std_logic_1164.all ;

entity sollql is

port (
input, clock : in std_logic;
output : out std_logic);
end sollql;

architecture rtl of soliql is
signal a0, al, x : std_logic;
begin
x <= not al and a0l ;
-- or:
-- x <= '1' when al='0' and a0='1' else '0' ;
process (clock)
begin -- process
if clock'event and clock = '1' then
al <= input ;
a0 <= al ;
output <= x ;
end if;
end process;

end rtl;

which gives the simulation results shown on the
last page.

Note that the order of signal assignments in the
process doesn’t matter — all take effect simultane-
ously at the end of the process.

We can replace the assignment statement with the
conditional assignment:

X <= '1' when al='0' and a0 = '1' else '0' ;

and since a conditional assignment corresponds
to a multiplexer we can draw the schematic as fol-
lows:

soll.tex

1

0
al=0 and a0=1

X

. al a0
inputo—p QD Q= D QDoutput

i]]

clock=

(c) This circuit detects a change in the input from

high to low, in other words, a falling edge.

The input is “registered” which adds a delay of be-
tween 0 and one clock cycle (it’s a half cycle in the
simulation above). The output is also registered
which results in an additional delay of one clock
cycle in detecting the falling edge.

Note that if I had used an xor gate instead of an
inverter and and gate (as hinted at in the ques-
tion), the circuit would be able to detect both ris-
ing and falling edges.

Question 2

(a) The design of a state machine to determine the

direction of motion is done using the 3-step ap-
proach described in the Lecture 2 notes:

Step 1: Determine inputs and outputs. As
stated in the question, the inputs are the quadra-
ture encoder outputs A and B, and the output is
right indicating motion toward the right.

Step 2: Determine state variables. Registered
outputs should be used as state variables and
therefore right will be a state variable. It will
have possible values 0 (moving left) and 1 (mov-
ing right).

It doesn’t seem possible to determine the direc-
tion of motion given only the previous direction
(the value of right) and the two inputs (A and
B) so we'll add additional state variables.

2016-05-01 09:25

Based on the question, the behaviour of the
state machine depends on the history of the in-
puts (i.e., which input changed first). To detect
changes in an input we need to have access to the
previous value as well as the current value. We
can save the previous values of either input using
flip-flops as shown in the first question.

Step 3: State transition conditions. According
to the problem description, the right output
(state) should be set true if “A goes high before
B” We can do this by testing A when B goes high.
If A is already high when B goes high then A went
high (changed) before B and we are moving right.
We can determine when B goes high by compar-
ing the current and previous values of B. It there-
fore appears we might only need one additional
state variable, the previous value of B which we’ll
label b0.

The state transition condition is simply that when
there is a rising edge on B (b0=0 and B=1) we set
right=A.

It’s easiest to draw this as two separate state ma-
chines, one for detecting rising edges on B and
one for changing the right output:

B0O=0 and B=1
and A=1

B=0 B0O=0 and B=1
and A=0

b0 state right state
machine machine

although we could combine the two into one:

B0O=0 and B=1
and A—

and ALL)4 G

BO= OandB 1
and A=0

note: MS bit is BO, LS bit is right

(b) The corresponding VHDL is shown below. Un-

fortunately, right is a reserved word in VHD so

I've used right_out as the output signal name.
I've used another signal, output, in the architec-
ture since the value of an output port signal can-
not be used inside the architecture.

It is good practice to register all inputs (for rea-
sons that will be explained later). In this case we
would have to use flip-flops on both the A and B
inputs. The solution where both inputs are regis-
tered is shown commented out below.

The VHDL code and simulation results are given
on the last page.

library ieee;
use ieee.std_logic_1164.all ;

entity sollq2 is
port (
a, b, clock : in std_logic;
right_out : out std_logic);
end sollq2;

architecture rtl of sollq2 is

signal b0, output, next_output : std_logic;

-- signal al, bO, bl, output, next_output : std_logic;
begin

next_output <= a when bO = '0' and b = '1' else output ;
-- next_output <= al when b0 = 'O' and bl = '1' else output ;

process (clock)
begin
if clock'event and clock='1' then
b0 <= b ;
--al <= a ;
— bl <=b ;
-- b0 <= bi;
output <= next_output ;
end if;
end process;

right_out <= output ;

end rtl;

We could improve the resolution of the quadra-
ture encoder by considering both rising and
falling edges of both signals but this is not re-
quired by the question.

Question 3

(a) The state machine controls which bit of the par-

allel output is to be loaded with the serial input.
This means there must be at least 6 states where
we store the input bit (labelled 0 to 5 below) and
a state where all bits have been filled and none of
the bits should be changed. This state is labelled

(b) Three possible solutions are shown as three archi-
. library ieee;
tectures for the same entity. use ieee.std logic_1164.a1l;

use ieee.numeric_std.all;

The solution in architecture rt11 uses a condi-
tional assignment for each output bit to update

architecture rtl2 of sollq3 is

signal p : std_logic_vector (6 downto 0) ;

that bit only in the appropriate state. This solu- signal state, next_state : unsigned (3 downto 0);

tion could be made much less verbose if we had begin

used a VHDL feature (for...generate) that next_state <=

we have not covered. Z:;:ﬁigff]:flo;:ﬁze}iezgziemn sme = T elee
state ;

The second solution uses a 7x1-bit array to model process (clock)

aRAM and an unsigned state variable that spec- Do k' event and clocke'l! them

ifies the RAM address to be written. To simplify (oo, invoger (tarey) <= sin ;

the design we use a 7-bit RAM and write all bits enj;‘r‘oiis; ;

following the 6’th bit to an (unused) bit 6. pout. <= p(5 doumto 0) ;

The third solution uses a bit mask approach. The end rt12;

state variable is a 6-bit std_logic_vector vari- -~ solution using a bit mask

able where each state has a ‘1’ only in the position Library ieee;

that is to be filled with the serial input data. The une loee. mumerie sraall;

state is reset to “000001” and shifted left on each architecture rt13 of solig3 is

clock. After six clock edges the value will be zero signal p, mext_p, state, next_state :

. . . d_logic_ (5 d 0) ;
and no more input bits will be stored. sed-logie_vecror (& downto
begin
Many other solutions are possible.
next_state <=
. . "000001" when sync = 'l' else
The VHDL code and the simulation results for state(4 downto 0) & "0" when state /= "000000" else

. . . state ;
the three architectures is given below.
next_p <=
(p or state) when sin = '1' else
library ieee; (p and not state) ;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all; process(clock)
begin
entity sollq3 is if clock'event and clock='1' then
port (state <= next_state ;
sin, sync, clock : in std_logic; p <= next_p
pout : out std_logic_vector (5 downto 0)); end if ;
end sollqg3 ; end process ;
-- solution using individual conditional assignments pout <= p
architecture rtll of sollq3 is end rtl3;

signal p, next_p : std_logic_vector (5 downto 0) ;
signal state, next_state : unsigned (3 downto 0);

begin
next_state <=
to_unsigned(0,state'length) when sync = '1' else
state + 1 when state /= 6 else
state ;
next_p(0) <= sin when state = 0 else p(0) ;
next_p(1) <= sin when state = 1 else p(1) ;
next_p(2) <= sin when state = 2 else p(2) ;
next_p(3) <= sin when state = 3 else p(3) ;
next_p(4) <= sin when state = 4 else p(4) ;
next_p(5) <= sin when state = 5 else p(5) ;

process(clock)
begin
if clock'event and clock='1l' then
state <= next_state ;
P <= next_p ;
end if ;
end process ;

pout <= p ;
end rtlil;

-- solution using an array (7x1 RAM)

oY o JTHHEE ToTen) T T 00X

il il 0| [i i i i X4

101100 ToTT00T] TOTT00Y, TOTIY TOTTXg ToToy T T ooy oo

i i b f Bl i il i X4

oY o JTHHEE ToTen) T T XN

i i b f Bl i il i X4

| _] |

_ |

] | _ | _ | f | _ | _ | _ | _ | f | | |

LU Il LI LI LI Il LI LI LI Il LLLILL LT LI Il LLLIL L)L LI Il LLLIL L)L LI Il LLLIL L)L LU LTI LILLIII

foger Peer et fuer wesr west A e s sberr seor shee ke e sl sfes sy sfee swfer sl a

| _ |

1 O L e o e O I 1 [S
g r 1 11 1 1

[0:5]d
[9:6]R2€15
[:9]d
[0:]22e3
[0:5]d
[9:€]82€15
UTS
ufs
02

A,

<+

3no 3ybTu
eq

q
e

32012
BWTL

indino

pe
1Ee
indut
32012
3WTL

