


The diagram above shows an oscilloscope screen capture that includes one period of an *active-low* digital waveform. The scale on the horizontal axis is 20 ns per division. What are: the rise time, period, positive pulse width and duty cycle?

duty cycle =
$$\frac{50}{130}$$
 =

Label the specifications A through D as requirements or guaranteed responses. Which specifications are measured to a signal being in a high-impedance state? Which are measured from a rising edge only? From either?

Exercise 3: Is t_{PD} a requirement or a guaranteed response?

Exercise 4: Is
$$t_{sU}$$
 a requirement or a guaranteed response? How
about t_{H} ?
 $t_{sU} - requirement - measured to resing clock edge $t_{H} - requirement - measured to change in data (D)$$

Exercise 5:

 t_{SU} (avail) = T_{clock} - t_{co} (max) - t_{PD} (max)

Which of the specifications in the formula above decrease the available setup time as they increase? Which increase it?

Exercise 6: For a particular circuit f_{clock} is 50 MHz, t_{co} is 2 ns (maximum), the worst-case (maximum) t_{PD} in a circuit is 15 ns and the minimum setup time requirement is 5 ns. What is the setup time slack? Will this circuit operate reliably? If not, what it the maximum clock frequency at which it will?

 $f_{cbok} = 53Mn_2$ $T_{clack} = 20NS$

50 pS

Exercise 7: What is the maximum clock frequency for a counter using flip-flops with 200 ps setup times, 50 ps clock-to-output delays and adder logic that has a 250 ps propagation delay?

for
$$= 10 \text{ det nat nas a 250 ps propagation detay:}$$

for $= 10 \text{ det so}(\text{reg.}) = 10 \text{ det avail})$
 $T_{\text{crock}} = \frac{1}{200} (\text{reg.}) + 100 \text{ det avail})$
 $= 200 + 50 + 250 = 500 \text{ ps}$
 $f_{\text{crock}} = \frac{1}{0.5 \text{ ms}} = \frac{1}{200 \text{ ps}}$