
ELEX 2117 : Digital Techniques 2
2025 Winter Term

Digital Interfaces

Digital circuits are used to transfer data between modules and devices. This lecture describes the operation and design of
some common interfaces.
After this lecture you should be able to: classify an interface as serial or parallel and uni- or bi-directional and explain
the advantages of each; ; determine when data is transferred over a ready/valid interface; draw the schematic or write the
Verilog for an SPI transmitter or receiver; convert data transmitted over an SPI interface to the interface waveform(s) and
extract the data from these waveforms.

Parallel Interfaces

We’ve seen how data can be transferred between two
flip-flops by connecting the Q output of one flip-flop
to the D input of another and using a common clock:

D Q D Q

clock

If the two flip-flops are on different devices –
whether two IC packages or two pieces of equipment
– we can connect them this way to transfer data be-
tween them:

D Q D Q

clock

data data

interface

device1 device2

This is the simplest type of interface between two
devices and can transfer any number of bits in paral-
lel on the same clock edge.

Ready/Valid Interfaces

There may not be new (valid) data to transfer on ev-
ery clock edge and the receiving device may not be
ready to accept data on every clock edge. For exam-
ple, some devices may need multiple clock cycles to
process the data being transmitted or received. Two
“handshaking” signals, often called valid and ready,
can be used to control the transfer of data1:

1This is sometimes called a FIFO (First-In First-Out) interface
and can also be used between modules.

transmitter

valid

ready

receiver

data

clock

valid

ready

data

clock

clock

• The transmitting device asserts a valid output
when its data output is valid.

• The receiving device asserts a ready output
when it is ready to accept data on the next clock
edge.

• Data is only transferred on clock edges where
both valid and ready are asserted.

Note that both devices use the same clock signal.
Thus the states of both devices change at the same
time.

valid

data

ready

clock

Exercise 1: Mark the clock edges where data is transferred.
The valid and ready outputs are generated by the

state machines that control the transmitter and re-
ceiver respectively.
Note that it is possible to transfer data on every

clock edge. This happens when valid and ready are
asserted on every clock edge.
Exercise 2: Draw the state transition diagrams for the transmitter
and receiver if the transmitter has a data word ready two clock cy‑
cles after the previous one is read and the receiver requires three
clock cycles to process each received word. Draw the timing dia‑
gram assuming valid and ready are asserted to start with.

lec7.tex 1 2025-03-08 20:51

Serial Interfaces

The bits of a word can be transferred over an inter-
face sequentially (serially), typically one bit at a time.
Although serial interfaces are more complex, this is
often offset by lower costs due to fewer IC pins, less
PCB area, and smaller connectors and cables.

Example: SPI

The Serial Peripheral Interface (SPI, pronounced
”ehs-pea-eye” or “spy”)) is a common serial interface
between a “master” (typically a microcontroller) and
a “slave” (typically a peripheral IC). Applications in-
clude LCD controllers and SD cards.
The SPI interface has one data signal in each direc-

tion (named MOSI and MISO), a clock signal (SCLK)
and a (typically active-low) slave-select (SS) signal.

MOSI

MISO

SCLK SCLK

SS

MOSI

MISO

SCLK

microcontroller
 (master)

peripherals
 (slaves)

MOSI

MISO

SS

SS0

SS1

The following timing diagram shows the operation
of the bus:

MOSI/MISO msb lsb

SS*

SCLK

The data transfer begins when the master asserts
SS. On the following clock edges2 one bit is trans-
ferred. SS is de-asserted when the transfer is done.
Note that the same number of bits are always trans-
ferred in each direction. Transfers are typically in
multiples of 8 bits, most-significant bit (m.s.b.) first.
The SPI interface only specifies how bits are trans-

ferred. Their meaning depends on the specific slave
device and will be defined in the datasheet for that
device.

2SPI interfaces can be configured so that the data is sampled
on either the rising or falling edge of SCLK.

MOSI

MISO

SCLK

SS*

Exercise 3: The diagram above shows a transfer over an SPI bus.
How many bits of data are transferred? What is the value, in deci‑
mal, of the data transferred from themaster to the slave? From the
slave to the master?

Implementing an SPI Interface

An SPI interface is typically connected to a CPU over
a parallel interface with ready/valid handshaking.
We can divide the design of such an interface into two
parts: a “datapath” that contains data registers and
logic, and a “controller” state machine that controls
the operation of the datapath.
The datapath of an SPI master interface can be im-

plemented with a shift register with a parallel input
(txdata) and a parallel data output (rxdata) as well
as serial input (MISO) and output (MOSI) as shown be-
low:

D Q
0

1

0

1{q[6:0],MISO}

q

shift

load

txdata

rxdata

q[7] MOSI

clock

MISO

q
88

8

8
8

8

q

When load is asserted, the register loads eight bits
from txdata. When shift is asserted, a MISO bit
shifts in on the right and the MOSI bit shifts out on
the left. After 8 clock cycles the transfer is done and
the eight received MISO bits can be read in parallel
from the shift register on rxdata. The parallel data
is typically read andwritten by amicrocontroller over
a parallel interface.
An example of an 8-bit SPI interface is shown be-

low. It has two 8-bit parallel data signals (rxdata and
txdata) and two control signals: a ready output that
is set true when the interface can accept another byte
and a valid input that is set true when txdata holds
the next byte to be transmitted.

2

https://en.wikipedia.org/wiki/Serial_Peripheral_Interface

MOSI

SCLK

SS

 SPI
 master
 state
machine

valid

ready

 shift
register

MISO

 rxdata

c
lo

c
k

 CPU
interface

8
 txdata

lo
a

d

clock

s
h

ift

8

reset

The controller for the SPI interface is a sequence
generator state machine with 16 states for each byte.
It has two states for each bit (one for SCLK high and
one for SCLK low).
The diagram below shows the waveforms for a 4-

bit SPI transmit interface:

ready

valid

load

clock

state 0 0 1 2 3 4 5 6 7 8 0 0

shift

SS*

MOSI/MISO d3 d2 d1 d0

SCLK

txdata

rxdata

Exercise4: Thediagramabove shows the signals and state variable
for a 4‑bit SPI interface. The controller sequence generator states
use a binary encoding. Write a state transition table for this state
machine. Write Verilog expressions for the controller outputs.
Note that SCLK is generated by the controller state

machine; it is not the clock signal used by the con-
troller or datapath.
The slave SPI interface will also be implemented

with a state machine that synchronises to the trans-
mitter usingSS. Note that bothmaster and slavemust
be configured for the same bit order and for whether
MOSI/MISO and SS* change on the rising or falling
edge of SCLK.

Asynchronous Interfaces

We can simplify serial interfaces by omitting the
clock. This requires that the clock signal be regen-
erated at the receiver so that the bits can be sampled
and shifted in at the correct time.

The receiver uses an internal clock running at ap-
proximately the same frequency as the transmitter.
But it must periodically re-synchronize its clock with
the transmitter clock to ensure the two clock’s edges
remain aligned. To do this the receiver looks for
changes in the input data signal in-between its clock
edges.
Accurate synchronization thus requires periodic

changes in data signal level, even if the data itself
does not contain transitions (e.g. it’s always low or
always high). There are various ways of ensuring
this, including “RS-232”, Manchester, and Differen-
tial coding.

Bi‑Directional Interfaces

We can also use one conductor to transmit data in
both directions. This requires the use of tri-state
or open-collector outputs and a protocol to control
which device may transmit.

3

https://en.wikipedia.org/wiki/RS-232
https://en.wikipedia.org/wiki/Manchester_code
https://en.wikipedia.org/wiki/Differential_coding
https://en.wikipedia.org/wiki/Differential_coding

	 Parallel Interfaces
	Ready/Valid Interfaces
	 Serial Interfaces
	Example: SPI

	Implementing an SPI Interface
	Asynchronous Interfaces
	Bi-Directional Interfaces

