
Implementation of Digital Logic Circuits

NAND

.A	В	DE	BOTION O/P
0	0	50	OFT 7
0) (ON	OFF (HIGH
١	0	ON	OFE)
١	1	OFF	
	I		

In which direction does the output current flow when the output is high? When it is low? Which transistors in the NAND circuit are on (conducting) in each case?

Exercise 2: A logic family has $V_{OH}(min) = 5 \text{ V}$, $V_{OL}(max) = 0.5 \text{ V}$, $V_{IH}(min) = 4 \text{ V}$ and $V_{IL}(max) = 1.5 \text{ V}$. What are the noise margins?

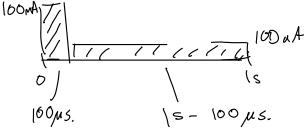
- noise margin(low) = $V_{IL(max)} V_{OL(max)}$
- noise margin(high) = $V_{OH(min)} V_{IH(min)}$

Exercise 3: All else being equal, by how much would we expect to decrease power consumption when reducing logic levels from 5 V to 3.3 V? What would be the effect on power consumption in reducing the clock frequency from 50 MHz to 1 MHz?

$$\frac{P_2}{P_1} = \frac{f_2}{f_1} \cdot \left(\frac{V_2}{V_1}\right)^2$$

=Voh - Vih = 5 - 4 = 1V

′il - Vol = 1.5 - 0.5 = 1∨


power after change: $P_2 = P_1 \cdot rac{f_2}{f_1} \cdot \left(rac{V_2}{V_1}
ight)^2$

percent reduction in power consumption: $R=-rac{\left(P_2-P_1
ight)}{P_1}\cdot 100$

percent eduction in power at 3.3 V $R\left(V_1=5\left[V
ight],V_2=3.3\left[V
ight],f_2=f_1
ight)=~56$

percent eduction in power at 1 MHz: $R(f_1 = 50 [MHz], f_2 = 1 [MHz], V_2 = V_1) = 98$

Exercise 4: If a circuit draws 100 mA for $100 \mu \text{s}$ per second and draws $100 \mu \text{A}$ the rest of the time, how long will a 1000 mAh battery last?

on time, on current: ${T_{\mathit{on}}} = 100\left[{us}
ight],{I_{\mathit{on}}} = 100\left[{mA}
ight]$

off time, off current: ${T}_{off} = 1\left[s
ight] - {T}_{on}, {I}_{off} = 100\left[uA
ight]$

average current:
$$I_{avg} = rac{I_{on} \cdot T_{on} + \ I_{off} \cdot T_{off}}{T_{on} + T_{off}} = [uA] \ = 110 \, [uA]$$

battery capacity: $C = 1000 \left[mA \cdot h \right]$

battery duration:
$$T = rac{C}{I_{avg}} = [years] = 1.04 \, [years]$$

Exercise 5: 18650 cells weigh about 50 g, output 3.7 V and have a capacity of 3500 mA-h. How many cells are needed to build an 85 kWh EV battery? How much does it weigh?

batttery capacity in Joules: $C_{bat}=85\,[kWh]=~3.06 imes10^8\,[J]$

cell capacity in Joules: $C_{cell} = 3.7 [V] \cdot 3500 [mA \cdot h] = 46620 [J]$

number of cells required to make up battery: $N_{cell} = rac{C_{bat}}{C_{cell}} = ~6564$

weight of cell: $W_{cell} = 50 \left[g
ight] = \left[g
ight] = 50 \left[g
ight]$

weight of battery: $W_{battery} = W_{cell} \cdot N_{cell} = 328.2 [kg]$

$$\frac{18 \text{ mm}}{18650 \text{ cell}} = \frac{7}{\sqrt{23}} \frac{18650 \text{ cell}}{1}$$

$$= \frac{7}{\sqrt{23}} \frac{1}{\sqrt{23}} \frac{1}{\sqrt{2$$

Exercise 6: What are the active-state current and the RC time constant for a wired-or interrupt-request line using a $10k\Omega$ resistor pulling up a circuit with 50 pF capacitance to 3.3 V?

$$I = \frac{V}{R} = \frac{0.33 \text{ mA}}{\frac{33}{4}}$$

$$I = \frac{V}{R} = \frac{0.5 \text{ ms}}{\frac{33}{4}}$$

12

-

2 mm

Exercise 7: The Apple M3 CPU has an area of approximately 146 mm². How many die fit on one 300 mm wafer? If each wafer costs \$20,000 to manufacture, what is the cost per die?

die per wafer:
$$N = \frac{\pi \cdot \left(\frac{300 \ [mm]}{2}\right)^2}{146 \ [mm^2]} = 484.15$$

cost per die: $\frac{20000}{N} = 41.31$
 $\sqrt{146} = 12.08$
 $\sqrt{146} = 12.08$

Exercise 8: How many square mm of PCB area does each package require? Which packages have their pins accessible when the package is placed on the PCB?

TQFP: anea =
$$22 \text{ mm}^2$$
 $n_2 2000 \text{ mm}^6$
Bat ana = 3.5 mm^2 $\approx 12 \text{ mm}^2$