
ELEX 2117 : Digital Techniques 2
2025 Winter Term

Simulation

This lecture describes how to use Verilog to simulate designs.
After this lecture you should be able to write a testbench that can: set initial values, generate clocks, read test vectors from
a file, display values, and terminate on a condition.

Simulation

HDLs can be used to test hardware designs by sim-
ulating their operation. These simulations consists
of the module being tested (called the Design Under
Test orDUT) that is instantiatedwithin anothermod-
ule called a testbench. The testbench applies inputs to
the DUT and checks its outputs:

testbench

DUT

stimulus
 inputs

response
 outputs

test vectors

Test Vectors

The inputs to the DUT and the corresponding ex-
pected outputs are called test vectors. These can be
generated by the testbench itself or they can be read
from a file.
Test vectors should include:

1. typical inputs,
2. minimum and maximum valid inputs,
3. invalid inputs, and
4. randomly-chosen values.

Exercise 1: Give examples of appropriate test inputs for each of
the above categories if youwere testing a circuit that computed the
square root of a 16‑bit signed number.

Verilog for Verification

The followingVerilog language features are useful for
simulation but many can’t be implemented in hard-
ware (“synthesized”).

Blocks

A block of code is a sequence of one or more state-
ments. In Verilog if a block contains more than one
statement then it is delimited with begin and end
keywords. The C language also has blocks, but the
delimiters are braces ({...}).

initial and always blocks

initial and always statements control the execu-
tion of a block similar to the way an if statement
controls execution of a block. A module may have
any number of initial and always blocks.
initial blocks execute once at the start of the

simulation and are used often used to initialise sig-
nals.
always blocks, for our purposes, execute continu-

ously again and again1

if/else/for/while

if/else, for, and while statements, whose syntax
and semantics are similar to those C, can be used
within initial or always blocks. However, in HDL
simulations control flow is often based on conditions
or events as described below.

Delays

Placing #number before a statement delays execution
by number simulation time. The suffixes ns and us
can be used for nano- and micro-seconds. Delays are
not synthesizable because they cannot be easily im-
plemented in hardware.
Placing @(event) before a statement where event

where can be a signal name, optionally with a
posedge or negedge prefix, delays execution until
that signal changes or the appropriate edge.

1Specifically, execution of the block starts at every “time step”.

lec5.tex 1 2025-02-17 09:16

wait

The wait(expression) statement pauses until the ex-
pression is true (non-zero).
Exercise 2: What’s the difference between: always @(x) y =

'1;, wait(x) y='1;, and @(x) y='1;?

System Tasks

Functions beginning with $ are called system tasks.
Useful ones include:

• $write() is similar to C’s printf(), and can
be used to print values during a simulation;

• $dumpfile and $dumpvars record changes in
signals to a .vcd file for subsequent viewing
with a waveform viewer.

• $fopen() and $fscanf(), similar to the C li-
brary functions fopen() and fscanf(), can
open and read from text files.

• $finish and $stop terminate or suspend a sim-
ulation.

There are many other system functions. For ex-
ample, to obtain the dimensions or limits of arrays,
compute math functions, return the current simula-
tion time, and initialize arrays from files. None are
synthesizable.

Example

The testbench below demonstrates the language fea-
tures described above.
The example DUT is a module with an 8-bit input

that outputs a 16-bit sum of all the odd-valued inputs
since a reset input was asserted.
An initial block opens a file containing test vec-

tors, initializes the clock signal, and $stop’s the sim-
ulation at the end of the test vector file.
An always block inverts the clock every 0.5 µs; this

creates a 1MHz clock.
The final always block continuously reads and ap-

plies the input(s) from each test vector, waits for the
falling edge of the clock, and compares the DUT out-
put(s) to the value(s) read from the test vectors.
The example testbench checks the DUT outputs

just before the falling edge of the clock and changes
the DUT inputs just after the falling edge:

initial block executes here inputs applied
after falling edge

output checked
before falling edge

time

(negedge clk)

clk

This offsets changes in the inputs and outputs by
half a clock period from the rising clock edge tomake
the waveforms easier to understand. This is a func-
tional simulation which means the delay of the DUT
is not being checked2
Note that the simulation code accesses the value

of out within the DUT using the notation <instance
name>.<signal name> (ex66_0.out in this case).
This violates the principles of modularity and “data
hiding” but can be useful for troubleshooting.
The test vectors are read from the file

ex66data.csv containing the following lines3:

0,0
1,1
2,1
3,4
4,4
5,8
7,16

Running this testbench using the Modelsim sim-
ulation program creates the waveform files shown in
Figure 1. The following lines are printed showing the
inputs, actual output, and the expected output:

run -all
in out_tb out
0 0 0
1 1 1
2 1 1
3 4 4
4 4 4
5 8 9 *** Error
7 16 16
** Note: $stop : ex66.sv(61)
Time: 7 us Iteration: 1 Instance: /ex66_tb
Break in Module ex66_tb at ex66.sv line 61

Exercise 3: How could you: (a) terminate the simulation if a test
vector failed? (b) change the clock frequency to 10 MHz? (c) print
each test vector as it’s read? (d) assert the reset input for two clock
cycles?
Exercise 4: What statements could you use in an initial block to cre‑
ate this waveform on the signal x?

2If theDUT description includes delays then a simulation can
also check that the DUT operates correctly at the applied clock
rate.

3This file is in Comma Separated Values (.csv) format.

2

https://en.wikipedia.org/wiki/Value_change_dump
https://en.wikipedia.org/wiki/Comma-separated_values

0 1 us 2 us 3 us 4 us 5 us 6 us 7 us

2

00 01 02 03 04 05 07

xxxx 0000 0001 0004 0009 0010

0000 0001 0004 0008 0010

n

reset

clk

in[7:0]

out[15:0]

out_tb[15:0]

Figure 1: Simulation waveforms (from ex66.vcd).

simulation
time (µs)

0 2 4 6

1

0

x

// output cumulative sum of odd-valued inputs

module ex66
(input logic reset, clk,
input logic [7:0] in,
output logic [15:0] out) ;

always_ff @(posedge clk)
out <= reset ? '0 :

in & 1 ? out+in : out ;

endmodule

// example testbench

module ex66_tb ;

// DUT inputs and outputs
logic reset, clk ;
logic [7:0] in ;
logic [15:0] out, out_tb ;

// instantiate DUT
ex66 ex66_0 (.*) ;

// file descriptor and number of values by fscanf()
integer fd, n ;

// initialization
initial begin

// record all signals in a .vcd file
$dumpfile("ex66.vcd") ;
$dumpvars ;

// initialize DUT signals and simulation variables
reset = '1 ;
clk = '0 ;

// open test vector file
fd = $fopen("ex66data.csv","r") ;

// print header
$write("%8s%8s%8s\n", "in", "out_tb", "out") ;

// de-assert reset after first rising edge
@(negedge clk) reset = '0 ;

end

// generate 1 MHz clock (2x500ns period)
always #0.5us clk = ~clk ;

// continuously apply input, wait, & check output
always begin

// read (and apply) DUT inputs
n = $fscanf(fd,"%d,%d", in, out_tb) ;

// stop if didn't read 2 values
if (n != 2) $stop ;

// display test vector
$write("%8d%8d",in,out_tb) ;

// wait for falling clock edge
@(negedge clk) ;

// show DUT state and check output
$write("%8d%s\n", ex66_0.out,

out != out_tb ? " *** Error" : "") ;

end

endmodule

Exercise 5: Write a testbench for the traffic light controller in a
previous lecture that asserts reset for one clock cycle, waits for the
lights to change 5 times, waits 3 clock cycles, and then terminates.

3

	Simulation
	Test Vectors
	 Verilog for Verification
	 Blocks
	initial and always blocks
	if/else/for/while
	 Delays
	wait
	 System Tasks

	Example

