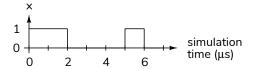
Simulation

_	•	_
FYE	rcise	1

Exercise 1:
1. typical inputs,
2. minimum and maximum valid inputs,
3. invalid inputs, and
4. randomly-chosen values.
Give examples of appropriate test inputs for each of the above categories if you were testing a circuit that computed the square root of a 16-bit signed number.

Exercise 2: What's the difference between:

always
$$@(x) y = '1;$$


and
$$@(x) y='1;?$$

Exercise 3: How could you:

Kercise 3 : How could you:		
	(a) terminate the simulation if a test vector failed?	
	(b) change the clock frequency to 10 MHz?	

- (c) print each test vector as it's read?
- (d) assert the reset input for two clock cycles?

Exercise 4:

What statements could you use in an initial block to create this waveform on the signal \mathbf{x} ?

Exercise 5: Write a testbench for the traffic light controller in a previous lecture that asserts reset for one clock cycle, waits for the lights to change 5 times, waits 3 clock cycles, and then terminates.