ELEX 2117 : Digital Techniques 2
2025 Winter Term

Hierarchical Design

This lecture describes Verilog modules and parameters.

After this lecture you should be able to: declare modules with parameters and ports, and instantiate modules using posi-

tional, named and wildcard parameters and signals.

Modules

Simple things are easier to design and test than com-
plex ones. Thus it’s good practice to divide designs
into smaller parts'. These can often be re-used.

Many designs incorporate complex parts designed
by others (e.g. processors, memories and interfaces),
called design IP (“Intellectual Property”).

In Verilog each part is amodule. Modules describe
logic that can be “instantiated” (duplicated and in-
serted into) another module:

instantiating module

name:id

]

]

]

i

]

' signal
| ————| port
]

]

]

]

]

]

]

]

The module’s interfaces are defined by a module
statement describing ports and parameters. Ports are
in, out or inout (bidirectional) signals while param-
eters are values that can customize each instance of
a module. The module’s body contains additional
signal declarations and parallel (concurrently exe-
cuting) statements between module and endmodule.
These define the structure or behaviour of the mod-
ule.

Here’s an example of a module named bits that
defines an nb-bit register:

module bits
#(parameter nb=1)
(
input logic [nb-1:
output logic [nb-1:
input logic clock

)

1d,
I q,

always_ff @(posedge clock) q <=d ;

endmodule

'How small? A good rule of thumb is to make sure each part
can be described on a single page.

lec4.tex

The parameter nb has a default value of 1 which
is used if a value is not specified when this module is
instantiated. There are two input ports (named d and
clock) and one output port (named q).

A module instantiation starts with the name of the
module followed by parameter values (if any), an in-
stance name (to identify individual instances of the
same module), and a description of how to connect
signals in the instantiating module to the ports in the
instantiated module. For example, the statement:

bits #(4) bo (a,b,c) ;

would instantiate a bits module giving the first pa-
rameter a value 4, giving this instance the name b0,
and connect the signals a, b and ¢ in the instantiat-
ing module to the corresponding ports in a copy (an
instantiation) of the bits module (in this case, d, q
and clock respectively).
Exercise 1: Draw a diagram for this instantiation of the bits mod-
ule. Label the module, instance, signal and port names as in the
diagram above.

An 8-bit, 3-stage shift register could be built using
three bits modules:

sr3bytes

bits:b0 bits:b1

bits:b2
newest a b
Ad qp d qp d ¢

clock clock clock
clock ’, ’, ’,

module sr3bytes

(

. oldestﬁ

input logic [7:9] newest,
output logic [7:0] oldest,
input 1logic clock

) s
localparam nbits = H

logic [nbits-1:0] a, b ;

bits #(nbits) b@ (newest,a,clock);

2025-02-11 20:39

clock

clock[

bits:b0

clock
newest[7..0] D—dm—

clock

d[7..0]

g7.0]

oldest[7..0]
d[7..0]

Figure 1: Shift Register Synthesis

bits #(.nb(nbits)) b1 (.q(b),.clock, .d(a));

bits #(.nb(nbits)) b2 (.d(b),.q(oldest),.*);
endmodule

Exercise 2: Identify the module instantiation statementsin the code
above. For each one, what is the instantiated module’s name? The
instance name?

When one module is instantiated in another, a sig-
nal can be connected to a module port by:

« port order (signal),

« port name and
(.port(signal)),

explicit signal name

« port name only — connecting to the matching
signal name (.port),

« awildcard that matches all remaining matching
port and signal names (. *).

The signal name can be an expressions (e.g.
word[15:8]) instead of a signal. Port order and
port name syntax cannot both be used in the same
instantiation.

Matching of values to parameters can be done by
order (value) or explicitly, (.parameter(value)) -
but not both.

Note that we declared the variables a and b within
the instantiating module, sr3bytes. We need to use
signal names in module instantiations. This means
that any signal used in an instantiation of a module
must also be declared within the instantiating mod-
ule, possibly as an input or output of the instantiating
module.

The synthesis result, shown above, is as expected.
Exercise 3: Write a counter module with a width parameter w,

w-bit inputs and outputs d and q, enable, 1oad and down control

inputs, and a clock c1k. The default counter width should be 4 bits,
the default value of enable should be 1, and the default values of
load, down and d should be 0. Rewrite the traffic light controller

module by instantiating two instances of this module.

	Modules

