
ELEX 2117 : Digital Techniques 2
2025 Winter Term

Examples of State Machines

This lecture shows how state machines can be used to design solutions for a wide variety of problems.
After this lecture you should be able to write Verilog to implement: a sequence generator, a sequence detector, and circuits
that combine state machines.

Sequence Generator

State machines can generate sequences. A simple ex-
ample is a counter. The count value can also index an
initialized array (a lookup table) to generate an arbi-
trary sequence:
module ex83 (input reset, clk,

output logic [7:0] y) ;

logic [2:0] n ;
logic [7:0] seq [0:7] = '{ 3, 5, 1, 7, 6, 1, 8, 9 } ;

always_ff @(posedge clk) n
<= reset ? '0 : n+1 ;

assign y = seq[n] ;

endmodule

0 1 us 2 us 3 us 4 us 5 us 6 us 7 us 8 us 9 us

xx 03 05 01 07 06 01 08 09 03
XXX 0 1 2 3 4 5 6 7 0

y[7:0]=03
n[2:0]=0
reset=0
clk=1

Exercise 1: Howwould you: (a) change the values in the sequence?
(b) change the length of the sequence to 6? (c) stop at the last
value?

Sequence Detector

State machines can detect sequences. Consider the
example of a 4-digit combination lock whose output
is asserted when the most recent four inputs match
the combination (4, 7, 2, 4 in this example). In this
design, the state is a count of the number of correct
consecutive input digits1:

0 1 2

!=7

4 7
3

2
4

4

!=4!=2

1In these sequence detector diagrams the transitions are la-
belled with the input value(s) rather than an expression. This is
common.

module ex82 (output logic unlock,
input logic [3:0] in,
input logic clk) ;

logic [2:0] n ;

always_ff @(posedge clk) n
<= n == 0 && in == 4 ? 1 :

n == 1 && in == 7 ? 2 :
n == 2 && in == 2 ? 3 :
n == 3 && in == 4 ? 4 :
0 ;

assign unlock = n == 4 ;

endmodule

0 1 us 2 us 3 us 4 us 5 us 6 us 7 us

XXX 0 1 2 3 4 0

0 5 4 7 2 4

unlock=x

n[2:0]=XXX

in[3:0]=0

clk=0

Exercise 2: Rewrite the module to store the sequence in an un‑
packed array as in the previous example.

Edge Detector

A sequence detector can be used to detect a rising
edge on an input that is not a clock. It detects the
sequence of a 0 followed by a 1.
We can implement it with three states represent-

ing: “0 or 1 followed by 0,” “0 followed by 1,” and “1
followed by 1”:

0 01 11
1 1

0 0

The “rising edge detected” output would be true only
in state 01.
Exercise 3: Write the body of a Verilog module named edge with
input in and output out that implements the rising‑edge detector.

lec3.tex 1 2025-02-06 08:19

Combining State Machines

The design of a state machine can often be simplified
by describing it as multiple machines. This section
describes two examples of a state machine combined
with a timer.

Traffic Light Controller

This example is a traffic light controller at an inter-
section:

R

Y

G

R

Y GR

The traffic lights are controlled by a sequence gen-
erator driven by a two-bit counter named state. The
state values and the corresponding lights output
values are shown below:

R

Y

G

R

Y GR

R

Y

G

R

GR GY

state 00 state 01

G

Y

R

G

GY GR

state 10

R

R

G

Y

GY GR

state 11

6’b100_001 6’b100_010 6’b001_100 6’b010_100

The duration of each state is controlled by a timer.
The count timer register is decremented using a 1Hz
clock.
The state register is loaded with the next state

when count reaches zero and count is loaded with
the duration of this next state2.
The state transition diagram for the light state ma-
chine is:

0 1

c:count==0

reset c
2

c
3

c

c

2Different states have different durations.

Exercise 4: Write the state transition table for this state machine.
The timer duration depends on the state since

states with yellow should be shorter. The state tran-
sition table for the timer is:

count reset state next count
x 1 x 29

count ≠ 0 0 x count − 1
0 0 00, 10 4
0 0 01, 11 29

A Verilog module implementing these two state
machines is:
// traffic light controller

module ex70
(output logic [5:0] lights,
input logic reset, clk) ;

logic [1:0] state ; // state register
logic [4:0] count ; // delay counter
logic [5:0] lut [4] = '{ 6'b100_001, 6'b100_010,

6'b001_100, 6'b010_100 } ;

// lights state (counter)
always @(posedge clk) state

<= reset ? 2'b00 :
state == 2'b11 && count == 0 ? 2'b00 :
count == 0 ? state + 1'b1 :
state ;

// set output based on state
assign lights = lut[state] ;

// timer
always @(posedge clk) count

<= reset ? 29 :
count != 0 ? count-1 :
state == 2'b00 || state == 2'b10 ? 4 : 29 ;

endmodule

The simulation results are shown in Figure 1.

Switch Debouncer

Mechanical switches “bounce” when they switch:

A switch debouncer eliminates these undesired tran-
sitions.

2

0 10 sec 20 sec 30 sec 40 sec 50 sec 60 sec 70 sec 80 sec

100001 100010 001100 010100 100001
00 01 10 11 00
29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 4 3 2 1 0 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 4 3 2 1 0 29 28 27 26 25 24 23 22 21 20 +

lights[5:0]
state[1:0]
count[4:0]
clk
reset

Figure 1: Simulation of traffic light controller.

The debouncer shown below also uses two state
machines. The first is a one-bit state machine that
holds the current output until the input is stable at a
new value. The second is a timer that determines the
input has been different than the output for 𝑁 clock
cycles.
The debouncer uses a register named out and an

input named in:

D Q out
0

1

clock

in

count != 0

The timer uses a register named count:

count in == out next
count

x 1 𝑁 − 1
0 x 𝑁 − 1
𝑛 0 𝑛 − 1

Exercise 5: Write always_ff statements that implement these
state machines.

3

	Sequence Generator
	Sequence Detector
	Edge Detector
	Combining State Machines
	Traffic Light Controller
	Switch Debouncer

