
Examples of State Machines

Exercise 1:
module ex83 (input reset, clk,

output logic [7:0] y) ;

logic [2:0] n ;
logic [7:0] seq [0:7] = '{ 3, 5, 1, 7, 6, 1, 8, 9 } ;

always_ff @(posedge clk) n
<= reset ? '0 : n+1 ;

assign y = seq[n] ;

endmodule

How would you: (a) change the values in the sequence? (b) change
the length of the sequence to 6? (c) stop at the last value?

Exercise 2:
module ex82 (output logic unlock,

input logic [3:0] in,
input logic clk) ;

logic [2:0] n ;

always_ff @(posedge clk) n
<= n == 0 && in == 4 ? 1 :

n == 1 && in == 7 ? 2 :
n == 2 && in == 2 ? 3 :
n == 3 && in == 4 ? 4 :
0 ;

assign unlock = n == 4 ;

endmodule

Rewrite the module to store the sequence in an unpacked array as
in the previous example.

Exercise 3: Write the body of a Verilog module named edge with
input in and output out that implements the rising-edge detector.

Exercise 4: Write the state transition table for this state machine.

Exercise 5: Write always_ff statements that implement these
state machines.

