
ELEX 2117 : Digital Techniques 2
2025 Winter Term

Sequential Logic and State Machines

This lecture describes how registers, counters, shift registers, timers, andarbitrary statemachines are implemented inVerilog
and how they are documented.
You should be able to design and document state machines using: an informal description, truth tables, state transition
diagrams, and synthesizable Verilog. You should be able to convert between any of these descriptions. You should be able
to select an appropriate state encoding.

Introduction

Registers

We can connectN flip-flops to the same clock to form
anN-bit register. This common clock loads every flip-
flop at the same time:

D Q

D0D1DN-1 Q0Q1QN-1

D Q

clock

D Q
N N

clock

D Q D Q

The Verilog always_ff statement creates a regis-
ter.
Modern logic design uses the same periodic clock

signal for every register. The state register(s) are thus
loaded on each rising edge of the clock, but not nec-
essarily with a different value.

State Machines

The state of a register is its value. A state machine is
a description of how the state changes.
A state machine is implemented as a register

whose value on the next rising edge of the clock is
based on the current state and inputs:

inputs

D Q outputs

clock

Mealy state machine only

 next−state
combinational
 logic

state

 output
combinational
 logic

The state register is loaded on each rising edge of
the clock, but if it’s loaded with its current value then
there is no change of state.

The output of a state machine is a function of its
state. In some cases the state itself may be the output.
The above describes a Moore state machine. A

Mealy state machine is one where the output is a
function of the current state as well as the inputs. We
will only consider Moore state machines.

Counters

A counter is a common state machine. The register’s
value increases by one on each clock edge. Typical
inputs include those to restart the sequence (typically
called reset), to pause or continue the sequence (hold
or enable), or to count down instead of up (e.g. up/‑
down).
Exercise 1: Write the Verilog for an 8‑bit counter named ’n’. Mod‑
ify it so that when the register value is set to 0 each time it reaches
99. Draw the corresponding block diagram. Identify the next‑state
combinational logic.
Exercise 2: Write a 4‑bit counter named ’cnt’ withreset,enable,
and down inputs. reset should have priority over enable. Draw
the block diagram.

Shift Registers

A shift register is a register whose next value (state)
is an input bit concatenated with the current register
bits as shown in the following diagram:

D Q

clock

q{in,q[N-1:1]}
N

in

N

Exercise 3: The example above is an N‑bit shift register that shifts
the bits right. Draw a block diagram andwrite the Verilog for a 6‑bit
shift register that shifts left.

lec2.tex 1 2025-01-22 09:01

 Q2

 Q1

 Q0

 D 3 2 8 5 4 1

 clock

time

Exercise 4: Fill in the diagram above for a 4‑bit (𝑁 = 4) right‑shift
shift register. Assume the initial value is zero. Which bit is the oldest
(first) value in the waveform? Which bit of the shift register holds
the oldest value?
A shift register makes previous inputs available in

parallel. This is useful for detecting sequences in an
input.
Exercise 5: Draw a block diagram and write the Verilog for a cir‑
cuit that sets an output named detect high when the sequence of
values 1, 1, 0, 1 has appeared on an input named in on successive
rising edges of the clock.

Timers and Clock Dividers

A common application for counters is to implement
delays or periodic signals.
It takes 𝑁 clock periods for a counter to count

down1 from 𝑁 − 1 to 0. If the clock period is 𝑇 sec-
onds then the time taken is 𝑁𝑇 seconds. A circuit
can thus create a delay of𝑁𝑇 seconds by counting𝑁
clock cycles2
Exercise6:Whatvalueof𝑁would result ina20msdelay if theclock
frequency is 50MHz? Howmanybits are needed for this timer’s reg‑
ister?
If the counter is reset to 𝑁 − 1 when it reaches

0 then the count values will be periodic with a pe-
riod 𝑁𝑇. If some event happens each time the count
reaches a specific value (e.g. 0) then this event hap-
pens with period 𝑁𝑇 (and thus a frequency 1/𝑁𝑇).
Exercise 7: Assume the timer above is reset to𝑁 − 1 each time it
reaches 0. What is the time between each time the count reaches
zero? What is this frequency? For how long does the register have
the value 0? What are the period and frequency of a signal that is
inverted each time the count reaches 0?

1Timers traditionally count down from𝑁−1 to 0 rather than
up from 0 to 𝑁 − 1 because it’s simple to determine when the
count reaches 0: adding−1 does not cause a carry.

2The time includes clock cycles during which the counter has
values𝑁 − 1 through 0 inclusive.

State Machine Descriptions

Consider a state machine with two bits of state that
sequences through the values 00, 01, 10, 11 and back
to 00. The output should be 0 in states 00 and 01 and
1 in states 10 and 11. There is an input named reset.
The state is set to 00 if reset is 1.

Truth Tables

We can describe a state machine using truth-tables.
One table has columns for the current state, the in-
put value(s), and the corresponding next state. An-
other table has columns for the current state and the
output.
We could write the state transition table and the

output table as:

state reset next
state

00 0 01
01 0 10
10 0 11
11 0 00
00 1 00
01 1 00
10 1 00
11 1 00

state output
00 0
01 0
10 1
11 1

Exercise 8: For the state machine described above, if the current
state is 01, what will be the next state? When will the state change?
What is the output in state 00? In state 01? In state 10?

Simplifications

We can simplify truth tables using the following con-
ventions: (1) x can be used for “don’t care” in state
or input columns; (2) the first matching row applies;
(3) if there is no matching row there is no change of
state; (4) expressions can be used to define the next
state as a function of the current state and the input.
For example, we could rewrite the above state tran-

sition table as:

state reset next
state

xx 1 00
11 0 00
𝑛 0 𝑛 + 1

2

Exercise 9: What will be the next state if the state is 00 and the
reset input is 1? If the state is 00 and the reset input is 0? When
does the state change? When does reset affect the output?
States can be labelled with names instead of nu-

merical values.
Exercise 10: Write the above state transition and output tables us‑
ing state names A, B, C, and D.

State Transition Diagrams

A state machine can also be described by a state tran-
sition diagram drawn using the following conven-
tions: (1) each state is represented by a circle labelled
with the state name or value; (2) each state shows
the output for that state (unless the state is also the
output value); (3) arrows show possible transitions
between states; (4) transitions are labelled with an
expression that must be true (non-zero) for the tran-
sition to happen3; (5) unlabelled transitions happen
unconditionally; (6) transitions with no origin come
from every state; (7) conditions that don’t cause a
change of state are not shown4; (8) only one transi-
tion out of a state may be true (the expressions on
the arrows leaving each state must be mutually ex-
clusive).
The following is a state transition diagram for the

state machine above:

r

00 01 10 11

0 0 1 1

r: reset==1

!r !r !r

!r

Exercise 11: Modify the diagram so the statemachine counts to 11
and stops.
Exercise 12: Add a down input that cause the values to count
down.

State Machines in Verilog

A state machine can be written in Verilog using one
conditional operator for each row in the state transi-
tion table or for each transition in the state transition

3Abbreviations for these expressions can be used to keep the
diagram tidy.

4Some authors do not allow this.

diagram. The condition in the expression is expres-
sion that labels the arrow in the diagram or an ex-
pression that is true for the current state and inputs
for that transition. The true value is the next state
for that transition. The false value is the next condi-
tional operator or, if no transition matches, the cur-
rent state.
A straightforward translation of the truth tables

above would be written as:
// 2-bit clock divider with reset

module ex79
(output logic [1:0] count,
output logic out,
input logic reset, clk) ;

always_ff @(posedge clk) count
<= reset && count == 2'b00 ? 2'b00 :

reset && count == 2'b01 ? 2'b00 :
reset && count == 2'b10 ? 2'b00 :
reset && count == 2'b11 ? 2'b00 :
!reset && count == 2'b00 ? 2'b01 :
!reset && count == 2'b01 ? 2'b10 :
!reset && count == 2'b10 ? 2'b11 :
!reset && count == 2'b11 ? 2'b00 :
count ;

assign out
= count == 2'b00 ? 1'b0 :
count == 2'b01 ? 1'b0 :
count == 2'b10 ? 1'b1 : 1'b1 ;

endmodule

— or more simply as —
// 2-bit clock divider with reset

module ex67
(output logic [1:0] count,
output logic out,
input logic reset, clk) ;

always_ff @(posedge clk) count
<= reset ? 2'b00 :

count == 2'b11 ? 2'b00 :
count + 1'b1 ;

assign out = count == 2'b10 || count == 2'b11 ;

endmodule

0 2 sec 4 sec 6 sec 8 sec 10 sec 12 sec 14 sec

00 01 10 11 00 01 10

clk

count[1:0]

out

reset

State Encodings

States may be represented (“encoded”) in different
ways:

Binary States are encoded as binary numbers. This
requires the fewest number of flip-flops. It is

3

used for state machines with many states such
as counters. In the above example the binary en-
coding of the states would be 00, 01, 10 and 11.

One-Hot There is one flip-flop for each state. Only
oneflip-flop at a time can be set to 1. This is used
when there are few states because simplifies the
next-state and output logic. In the above exam-
ple a one-hot encoding might be 1000, 0100,
0010 and 0001.

Output Each state is encoded as the output for that
state. This eliminates the need for any logic to
determine the output as a function of the state.
However, this is only possible when the output
is different for each state. The above example
could not use an output state encoding because
the output is 0 for states 00 and 01 and the out-
put is 1 for states 10 and 11.

Input The state encoding is a sequence of previous
inputs. This is used when the output can be de-
termined from a small number of previous in-
puts. For example, a combination lock might
unlock after the correct sequence of inputs.

Exercise 13: Howmany bits need to be considered to detect a spe‑
cific state when a binary encoding is used? How many need to be
considered if a one‑hot encoding is used?
Exercise14: Ifweused8‑bits of state information, howmany states
could be represented? What if we used 8 bits of state but used a
“one‑hot” encoding?

4

	Introduction
	Registers
	State Machines

	Counters
	Shift Registers
	Timers and Clock Dividers
	State Machine Descriptions
	Truth Tables
	Simplifications
	State Transition Diagrams
	State Machines in Verilog

	State Encodings

