
ELEX 2117 : Digital Techniques 2
2025 Winter Term

Introduction to Digital Design with Verilog HDL

This is a brief introduction to digital circuit design using the SystemVerilogHardwareDescription Language (VerilogHDL).
After this lecture you should be able to: define a module with single- and multi-bit logic inputs and outputs; write Verilog
numeric literals in binary, decimal and hexadecimal bases; declare arrays and arrays of arrays; evaluate the value and
width of expressions containing logic signals, arrays, numeric literals and the operators described below; use assign,
always_ff, and component instantiation statements to create combinational logic, registers, and to instantiate onemodule
in another.

Introduction

Hardware Description Languages (HDLs) are used to
design digital circuits. In this course we will use Sys-
tem Verilog, the modern version of the Verilog HDL,
rather than the other popular HDL, VHDL.
Let’s start with a simple example – a circuit called

an ex1 that has one output (y) that is the logical AND
of two input signals (a and b). The file ex1.sv con-
tains the following Verilog description:
// AND gate in Verilog

module ex1 (input logic a, b,
output logic y) ;

assign y = a & b ;

endmodule

Some observations on Verilog syntax:

• Everything following // on a line is a comment
and is ignored.

• Module and signal names can contain letters,
digits, underscores (_), and dollar signs ($). The
first character of an identifier must be a letter or
an underscore. They cannot be the same as cer-
tain reserved words (e.g. module).

• Verilog is case-sensitive: a and A would be dif-
ferent signals.

• Statements can be divided into any number of
lines. Any number of spaces can be used. A
semicolon ends each statement.

Capitalisation and indentation styles vary. In this
course you will need to follow the coding style guide
available on the course website.
Themodule definition begins by defining the input

and output signals for the device being designed.

The body of themodule contains one ormore state-
ments, each of which operates at the same time – con-
currently. This is the key difference between HDLs
and programming languages – HDLs allows us to de-
fine concurrent behaviour.
The single statement in this example is a signal as-

signment that assigns the value of an expression to
the output signal y. Expressions involving logic sig-
nals can use the logical operators described below in-
cluding & (and), | (or), and ^ (exclusive-or). Paren-
theses can be used to order the operations.
From this Verilog description a program called a

logic synthesizer (e.g. Intel’s Quartus) can generate a
circuit that has the required functionality. In this case
it’s not too surprising that the result is the following
circuit:

a
y

b
y

If you’re familiar with the C programming language
you’ll note that Verilog uses similar syntax.
Exercise 1: What changes would result in a 3‑input OR gate?
Exercise 2: What schematic would you expect if the statement was
assign y = (a ^ b) | c ;?

Reserved Words

System Verilog has about 250 reserved words (in-
cluding many common ones such as time, wait,
disable, reg, table, input, …) that may not be
used as module or signal names. Doing so will give
a syntax error when you try to compile the descrip-
tion. An editorwith syntax highlightingwill help you
identify and avoid using reserved words.

lec1.tex 1 2025-01-08 09:37

Variables and Literals

logic Signals

Verilog’s logic variables – also called “signals” –
can have four values: 0 (false or low), 1 (true or
high), z (high impedance, used for synthesis of tri-
state outputs) and x (undefined, represents an unde-
fined value).
Verilog’s other types (signed, int, float, char,

struct, ...) are not needed for this course.

Packed Arrays

An array is a collection of logic signals whose ele-
ments can be selected by a value called the index. Ar-
rays often represent numerical values in binary form.
For example, the declaration logic [3:0] a;

specifies an array named awith a ‘width’ of four bits.
In this example the bit indices are declared as go-

ing from 3 down to 0. If the bit values are written out
and represent a binary number then a[3], the left-
most bit, is the most significant bit. a[0] is the right-
most (least significant) bit.
Exercise 3: If the signal i is declared as logic [2:0] i;, what is
the ‘width’ of i? If i has the value 6 (decimal), what is the value of
i[2]? Of i[0]?
Packed arrays synthesize to buses or words.

Numeric Literals

Numeric literals, often called “constants,” are written
as a sequence of up to three parts: the number of bits;
the letters 'b for binary, 'h for hex, or 'd for decimal;
and the value in the specified base. The default width
is 32 and the default base is decimal. Underscores (_)
may be used within the value to improve readability.
Exercise 4: What are the widths and values, in decimal, of the fol‑
lowing: 4'b1001? 5'd3? 6'h0_a? 3?
The notations '0 and '1 are convenient abbrevia-

tions for a literal that is all-zeros or all-ones.

Unpacked Arrays

An unpacked array is a collection of packed ar-
rays that can be accessed one at a time. The
unpacked dimensions are given after the name
and are often in increasing order. For example,
logic [7:0] a [0:15];might describe amemory
with 16 words of 8 bits.

Array Literals

Array literals can be defined by group-
ing with '{...}. For example,
logic [3:0] z [0:1] = '{ 3'b11, 3'b101 };
Exercise 5: Drawa two‑dimensional table showing the values of the
bits in z. .
Array literals define truth tables. Each element of

the array corresponds to one row of the table. The
array index is the input that selects the output word.
Exercise 6: Write the truth table for a one‑bit adder with carry.
There are three inputs (a, b and carry) and two outputs (sum and
carry). Define an array that implements this function. Write an ex‑
pression that uses this array to find the sumand carry of logic sig‑
nals a and b.

Expressions

Combinational logic is defined using expressions as
in the example above. Expressions include operators
that operate on “operands” – numeric literals (“con-
stants”), logic variables and arrays of these.
• Operators with higher “precedence” are applied
before those of lower precedence.

• If two operators are of equal precedence they are
applied from left to right1.

• Operands and operators affect the number of
bits in the result (the “width”) as described be-
low.

• Values are truncated or padded (with zeros) on
the left to the width of the final expressionwhen
computing the result

To evaluate an expression:
1. find the value and width of each operand (sig-

nals or literals)
2. group operators with operands according to

precedence (or left to right when the precedence
is the same)

3. apply the operators, obeying rules for padding
and truncation as appropriate for the operands

The descriptions below specify the width of the re-
sult of each operator. The expression is then evalu-
ated using the width of the largest result, including
the left-hand side of an assignment.

1Except the conditional operator: a ? b : c ? d : e is
evaluated as a ? b : (c ? d : e)

2

Operators

The following describe some useful Verilog operators
in order of decreasing precedence.

Slices A range of bits in a packed array (a “slice”)
can be extracted using a range of indices in
brackets ([first:last]) after the array name. The
bit order cannot be reversed. The width is the
number of bits in the slice.

Negation Logical negation (!) is zero (0) when ap-
plied to a non-zero operand and one (1) other-
wise. The width is 1 bit.
Bitwise negation (~) inverts the value of each bit.
The width is the width of the operand.
Exercise 7: What are the values of the following expressions:
!4'b010? ~4'b010? 0+~(!0)?

Arithmetic Multiplication (*) , division (/), addi-
tion (+) and subtraction (-) can be applied to ar-
rays. The first two have higher precedence. The
width is the largest of the two operands’ widths.

Shift Right- (>>) and left-shift (<<) operators shift
the bits in the array operand on the left by the
amount on the right. The width is the width of
the left operand.

Comparison When arithmetic comparison opera-
tors (<, >, <=, >=) are applied to arrays the result
is 1 if the comparison is true and 0 otherwise.
The width is 1 bit.

Equality The result of the equal (==) or not-equal
(!=) operators is 1 if the operands are equal and
0 otherwise. The width is 1 bit.

Bitwise Logical Bitwise logical operators are ap-
plied to the corresponding bits in two operands.
Bitwise-and (&) has higher precedence than
bitwise-or (^) which has higher precedence that
bitwise-or (|). Thewidth is the largest of the two
operands’ widths.

Logical Logical operators result in 1'b1 if both
operands (for &&) or either operand (for ||) are
non-zero. Logical and (&&) has higher prece-
dence than logical or (||). The width is 1 bit.
Exercise 8: An array declared as logic [15:0] n; and
has the value 16'h1234. What are the values and widths
of the following expressions? n[15:13] !n ~n[3:0] n>>4

n + 1'b1 n[7:0] - n[3:0] n >= 16'h1234 n ^ '1 n

&& !n n * (!n + 1'b1)

Conditional Operator Verilog’s conditional oper-
ator is a concise syntax for describing a two-
way multiplexer. The operator consists of three
parts: the condition, the true value and false
value. The result of the operator is the true value
if the condition is non-zero, or the false value
otherwise. The width is the largest of the true
and false value widths.
For example:

assign y = sel ? a : b ⇔
sel

a

b
y

1

0

sets y to a when sel is non-zero and sets y to b
when sel is zero.
Exercise 9: What are thewidth and value of the expression: 3
? 16'd10 : 8'h20? If x has the value 0, what is the value
of the expression: x ? 1'b1 : 1'b0 ? If x has the value
‑1?

The following example implements a multi-
plexer that selects from one of two 4-bit inputs:
module ex36 (input logic outhi,

input logic [3:0] hi, lo,
output logic [3:0] y) ;

assign y = outhi ? hi : lo ;

endmodule

which results in:
outhi

lo[3..0]
y[3..0]

y~[3..0]
0

1
hi[3..0]

Conditional operators can be used to concisely
describe trees of multiplexers. Unlike other op-
erators, a sequence of conditional operators is
evaluated from right to left.
Exercise 10: Draw the schematics corresponding to:

y = a ? (b ? s1 : s2) : (c ? s3 : s4);

y = a ? s1 : b ? s2 : c ? s3 : s4;

y = a ? b ? c ? s3 : s4 : s2 : s1 ;

Concatenation The concatenation operator ({,})
combines expressions into a wider value. The
width is the sum of the widths.
Exercise 11: Use slicing and concatenation to compute
the byte‑swapped value of an array n declared as logic
[15:0] n.

3

Exercise 12: If n has the value 16'h1234, what are the value
and width of: {n[7:0],n[15:8],4'b1111}?

Exercise 13: Use concatenation to shift n left by two bits.

Concatenations of variables can also be used on
the left hand side of an assignment.
Exercise14: Useconcatenation toassign thehigh‑orderbyte
of n to a and the low‑order byte to b.

Statements

Modules contain variable declarations followed by
assign, always_ff, and component instantiation
statements. Statement order does not matter – the
hardware created by each statement operates simul-
taneously (concurrently).

assign

The assign statement continuously assigns the
value of the expression on the right-hand side (RHS)
to the signal on the left-hand side (LHS). The most
significant bits are dropped if the RHS is wider than
the LHS. For example, this module:
module ex62 (input logic [15:0] a,

output logic [15:0] y) ;
assign y = a + 1 ;

endmodule

results in this logic:

a[15..0] +

Add0CIN1'h0

A[15..0]

B[15..0]16'h1

OUT[15..0]
y[15..0]

Exercise 15: Some software warns about truncation. How could
you re‑write the assign statement to avoid such a warning?

always_ff

The always_ff statement creates registers and flip-
flops. For example, the following Verilog:
module ex2 (input logic [3:0] d,

input logic clk,
output logic [3:0] q) ;

always_ff @(posedge clk)
q <= d ;

endmodule

synthesizes a 4-bit D flip-flop that transfers the d in-
put to the q output on the rising (positive) edge of
clk:

d[3..0]

clk q[3..0]

q[0]~reg[3..0]

D

CLK

SCLR
4'h0

Q

Note the use of “non-blocking assignment” (<=) in
always_ff statements. As with the blocking assign-
ment (=), the leftmost bits are dropped if the RHS is
wider than the LHS.
Exercise 16: Write an always_ff statement that toggles (inverts)
its one‑bit output on each rising edge of the clock.

Component Instantiation

Module instantiation inserts a copy of (“instanti-
ates”) one module into another and connects signals
to the instantiated module’s input and output ports.
For example, the module:
module ex60 (input logic x, y, z,

output logic c) ;

logic t ;

ex1 ex1_1 (x, y, t) ;
ex1 ex1_2 (z, t, c) ;

endmodule

creates a 3-input AND gate by instantiating two in-
stances of the ex1module defined earlier:

z

x

ex1:ex1_2

a

b

y

ex1:ex1_1

a

b

y

y

c

Exercise 17: Identify the following in the diagram above: com‑
ponent names, component “instance names,” component port
names, module port names. Label the signal t in the schematic.
Exercise 18: Rewrite the ex60module using operators. Which ver‑
sion – “structural” or “behavioural” – is easier to understand?

4

	Introduction
	Reserved Words

	Variables and Literals
	logic values
	Packed Arrays
	Numeric Literals
	Unpacked Arrays
	Array Literals

	Expressions
	Operators

	Statements
	assign
	always ff
	Component Instantiation

