
ELEX 2117 : Digital Techniques 2
2025 Winter Term

Solutions to Final Exam

There were two versions of most questions. The questions and answers for both versions are given below.

Question 1

A state machine controls a door that opens for 6
seconds when a button is pushed. A button input
is asserted when the button is pushed. open and
close outputs control a motor. The closed and
opened inputs are assertedwhen the door is closed or
opened respectively. The clk clock input frequency
is 100 Hz. The Verilog module implementing this
state machine is declared:
module controller (input logic clk, button, opened,

↪ closed, output logic open, close) ;

Neither output should be asserted until button is as-
serted. Then open should be asserted until opened
is asserted. Then there should be a 6 second delay
with neither output asserted. Then close should be
asserted until closed is asserted. Then the state ma-
chine should wait for the next push of button.
Write a controller module to implement this

state machine. You may assume the controller starts
in a valid state. Declare any additional signals re-
quired. Follow the course coding conventions but
do not include comments. Hints: Start by deciding
on the states, their encodings, and the outputs in each
state. You can implement the delay with a counter that
is decremented in the state where the door is open and
is initialized to its maximum value in other states.

Answer

From the description there are three combinations of
outputs required. For a Moore state machine each of
these must be a different state:

state open close
opening 1 0
closing 0 1
waiting 0 0

Since each state has a different output we can use
an “output” state encoding in which the state vari-
ables are the open and close outputs. From the de-
scription we can derive a state transition diagram:

waiting

00

opening

10

closing

01

closed && button opened && !count

closedopened

The delay can be implemented with a 9 (or more)
bit counter that counts from 599 to zero in the wait-
ing state and is reset to 599 in the opening state. The
Verilog for this implementation is:
module controller

(input logic clk, button, opened, closed,
output logic open, close) ;

logic [1:0] state ;
logic [9:0] count ;

assign {open,close} = state ;

always_ff @(posedge clk) state
<= state == 2'b00 && closed && button ? 2'b10:

state == 2'b00 && opened && !count ? 2'b01:
state == 2'b10 && opened ? 2'b00 :
state == 2'b01 && closed ? 2'b00 :
state ;

always_ff @(posedge clk)
count <= state == 2'b00 ? count - 1 : 599 ;

endmodule

We can simplify the transition conditions by using
two “waiting” states where both outputs are off:

waitopen

00

opening

10

closing

01

opened !count

waitclosed

00

button

closed

In this case we can’t use an “output” encoding be-
cause there are two states with output 00 so a binary
encoding is used in the following solution:
module controller

(input logic clk, button, opened, closed,
output logic open, close) ;

logic [1:0] state ;
logic [9:0] count ;

always_ff @(posedge clk)

examsol.tex 1 2025-04-21 22:28

0 1 sec 2 sec 3 sec 4 sec 5 sec 6 sec 7 sec 8 sec 9 sec 10 sec

00 10 00 01 00
XXX 599 599

button=0
clk=0
open=0
close=0
closed=1
pos=0
opened=0
state[1:0]=00
count[9:0]=XXX

Figure 1: Simulation results for Question 1 (first implementation).

0 1 sec 2 sec 3 sec 4 sec 5 sec 6 sec 7 sec 8 sec 9 sec 10 sec

00 01 10 11 00
599 599

button=0
clk=0
open=0
close=0
closed=1
pos=0
opened=0
state[1:0]=00
count[9:0]=XXX

Figure 2: Simulation results for Question 1 (second implementation).

state <= state == 0 && button ? 1 : // waitclosed
state == 1 && opened ? 2 : // opening
state == 2 && !count ? 3 : // waitopen
state == 3 && closed ? 0 : // closing
state ;

always_ff @(posedge clk)
count <= state == 2 ? count - 1 : 599 ;

assign {open,close}
= state == 0 ? 2'b00 :
state == 1 ? 2'b10 :
state == 2 ? 2'b00 :
state == 3 ? 2'b01 : 2'b00 ;

endmodule

It’s also possible to implement individual statema-
chines for open and close. The first state transition
diagramabove can be converted into a state transition
truth table1:

state opened closed button count next
0 0 x 1 1 x 1 0
0 0 1 x x 0 0 1
1 0 0 x x x 1 0
0 1 x 0 x x 0 1

from which we can write sum-of-product equations
for the next-state values of open and close:
module controller

(input logic clk, button, opened, closed,
output logic open, close) ;

1Only rows with non-zero values for the next state are shown.

logic [9:0] count ;

always_ff @(posedge clk)
open = (!open && !close && closed && button) ||

(open && !close && ! opened) ;

always_ff @(posedge clk)
close = (!open && !close && opened && !count) ||

(!open && close && ! closed) ;

always_ff @(posedge clk)
count <= open ? 599 : count - 1 ;

endmodule

This is less clear than the previous solutions but
shows which variables must be included in expres-
sions for the next values of open and close.
A testbench is shown below and simulation results

are show in Figures 1 and 2.
module controller_tb ;

logic clk, button, opened, closed ;
logic open, close ;
int pos = 0 ; // door percent open

controller c0 (.*) ;

initial begin
$dumpfile("controller.vcd") ;
$dumpvars ;

c0.state = '0 ;
{c0.open,c0.close} = '0 ;
{clk,button,opened,closed} = 4'b0001 ;
#1s button = 1 ;

2

#0.1s button = 0 ;
#9s ;
$finish ;

end

always #5ms clk <= !clk ;

// emulate door opener and limit switches with 1
// second opening and closing delays
always begin

#0.01s ;
pos += pos < 100 && open ? 1 : 0 ;
pos -= pos > 0 && close ? 1 : 0 ;
opened = pos == 100 ;
closed = pos == 0 ;

end

endmodule

Question 2

A logic circuit consumes 10 (or 20) mW with a clock
frequency of 1 MHz and a voltage of 5 V. What clock
frequency would allow this circuit to operate for one
year (8760 hours) from a 2 V, 200 mA-hour battery?

Answer

The capacity of the battery is 𝐶 = 𝐼2𝑇 where 𝐼2 is the
current supplied for 𝑇 = 8760 hours. The power the
battery supplies for a year is 𝑃2 = 𝑉bat ⋅ 𝐼2 =

𝑉bat⋅𝐶
𝑇

.
There are two possible solutions depending on

your assumptions about the voltage supplied to the
circuit (𝑉2).

Supply voltage changes to 2 V. In this case the cir-
cuit operates at the battery voltage, 𝑉2 = 𝑉bat =
2V.
Solving the power consumption equation for 𝑓2
and substituting for 𝑃2:

𝑓2 = 𝑓1
𝑃2
𝑃1
(𝑉1𝑉2

)
2
= 𝑓1

𝑉bat𝐶
𝑃1𝑇

(𝑉1𝑉2
)
2

Substituting 𝑓1 = 1MHz, 𝑉2 = 𝑉bat = 2V,
𝑃1 = 10mW (or 20mW), 𝐶 = 200mA−h, 𝑇 =
8760h, and 𝑉1 = 5V:

𝑓2 = 1 × 106 2 ⋅ 200
10 ⋅ 8760 (

5
2)

2

𝑓2 = 28.5 kHz (or 𝑓2 = 14.3 kHz).

Supply voltage remains at 5 V. In this case a (loss-
less) voltage converter converts the battery’s 2 V
output to 𝑉2 = 𝑉1 = 5V.

Solving the power consumption equation for 𝑓2
and substituting for 𝑃2:

𝑓2 = 𝑓1
𝑃2
𝑃1
(𝑉1𝑉2

)
2
= 𝑓1

𝑉bat𝐶
𝑃1𝑇

(𝑉1𝑉2
)
2

Substituting 𝑓1 = 1MHz, 𝑉2 = 𝑉1 = 5V, 𝑉bat =
2V, 𝑃1 = 10mW (or 20mW), 𝐶 = 200mA−h,
and 𝑇 = 8760h:

𝑓2 = 1 × 106 2 ⋅ 200
10 ⋅ 8760 (

5
5)

2

𝑓2 = 4.57 kHz (or 𝑓2 = 2.28 kHz).

Question 3

Fill the table below with the value of each expres-
sion as a Verilog numeric literal including the correct
width and the correct value in hexadecimal base. As-
sume the following declarations:

logic [7:0] x ;
logic [3:0] y ;

and that x has the value 8'h38 (or 8'hA6) and that y
has the value 4'b0101. The first row has been filled
in as an example. You need not show your work or
draw another box around the answer

expression value

x[3:0] 4'h8

(or 4'h6)

x[1] & x

x + 2 >> 1

x >> 1 * 2

x > {y,y} ^ x != x

x[3] ? y[0] : y

0 ? 1 ? 2 ? 3 : 4 : 5 : 6

3

Answer

For x=8'hA6 (8'd166, 8'b1010_0110) and
y = 4'b0101:

expression value

x[3:0] 4'h6

x[1] & x 8'h0

x + 2 >> 1 32'h54

x >> 1 * 2 8'h29

x > {y,y} ^ x != x 1'h1

x[3] ? y[0] : y 4'h5

x[1] ? 2 ? 3 : 4 : 5 32'h3

For x=8'h38 (8'd56, 8'b0011_1000) and
y = 4'b0101:

expression value

x[3:0] 4'h8

x[1] & x 8'h0

x + 2 >> 1 32'h1d

x >> 1 * 2 8'he

x > {y,y} ^ x != x 1'h0

x[3] ? y[0] : y 4'h1

x[1] ? 2 ? 3 : 4 : 5 32'h5

Question 4

Write a System Verilog testbench named mult_tb to
test a multmodule declared as:
module mult (

input logic [31:0] a, b,
output logic [31:0] c,
input logic clk, valid,
output logic ready) ;

Your testbench must instantiate the module and
supply it with a 10 MHz clock on clk.
The testbench must do the following, in order: set

a to 32'd11 and b to 32'd2, assert valid, wait un-
til ready is asserted, print the string "error" if the
value of c is not equal to 32'd22, and terminate the
simulation.

Declare all signals used in your testbench. Do not
write or declare the mult module. Do not do any-
thing else in your testbench such as reading or writ-
ing files (including .vcd files). Omit comments.

Answer

module mult
(input logic [31:0] a, b,
output logic [31:0] c,
input logic clk, valid,
output logic ready) ;

logic [5:0] n = 0 ;

assign c = a * b ; // + 1 ;

always_ff @(posedge clk)
n <= ready && valid ? 31 : n ? n-1 : 0 ;

assign ready = !n ;

endmodule

module mult_tb ;

logic [31:0] a, b, c ;
logic clk, valid, ready ;

mult m0 (.*) ;

initial clk = '0 ;
always #0.05us clk = ~clk ;

initial begin
a = 11 ;
b = 2 ;
valid = '1 ;
wait (ready) ;
// or:
while (ready !== 1) @(ready) ;
$display(a,b,c) ;
if (c != 22) $write("error") ;
$finish ;

end

endmodule

Question 5

A logic family has VIH(min) = 0.8 (or 0.7) V and
VIL(max) = 0.3 (or 0.4) V. What VOH(min) and
VOL(max) levels would result in a noise margin of
0.2 V for both high and low logic levels?

Answer

Solving for VOH(min) and VOL(max):
𝑉OH(min) = 𝑉IH(min) + noise margin(high) =

0.8 + 0.2 = 1V (or 0.7 + 0.2 = 0.9V).

4

and
𝑉OL(max) = 𝑉IL(max) − noise margin(low) =

0.3 − 0.2 = 0.1V (or 0.4 − 0.2 = 0.2V).

Question 6

What is the maximum clock frequency that would
result in reliable operation for a circuit whose max-
imum delay through any combinational logic path is
50 (or 30) ns and that uses registers with a clock-to-
output delay of 2 ns and a minimum setup time re-
quirement of 10 (or 6) ns?

Answer

At the maximum clock frequency slack is zero and

𝑡SU(required) = 𝑇clock − 𝑡CO(max) − 𝑡PD(max)

Solving for 𝑇clock:

𝑇clock = 𝑡SU(required) + 𝑡CO(max) + 𝑡PD(max)

and 𝑇clock = 10 + 2 + 50 = 62ns which is clock fre-
quency of 16.1MHz (or 6 + 2 + 30 = 38ns which is
a clock frequency of 26.3MHz).

Question 7

The diagram below shows the waveforms of an SPI
interface that follows the conventions described in
the lecture notes. Fill in one of the twomissing wave-
forms so that the 8-bit value 8’h1b (or 8’h27) is trans-
ferred from the slave to the master (or themaster
to the slave). Note: No marks will be awarded if you
fill in both waveforms.

MOSI

MISO

SCLK

SS*

Answer

For data transfer from slave to themaster the wave-
form will appear only on MISO. For data transfer
frommaster to the slave the waveform will appear
only on MOSI. The waveforms for the two values
transferred are shown below:

The data bits are transferred most-significant-bit
(msb) first and the data is captured on the rising edge
of SCLK. For the transfer of 8’h1b the waveforms are:

MOSI

MISO

SCLK

SS*

For the transfer of 8’h27 the waveforms are:

MOSI

MISO

SCLK

SS*

Question 8

You wish to sample the signal from a sensor so that it
can be analyzed on a computer. The signal contains
frequency components up to 100 kHz (or 50 kHz).
You would like the quantization noise power to be
less than 0.5 (or 0.1)% of the signal power. You can
assume that the equation for the quantization SNR
of a sine wave applies to this signal.

(a) What sampling rate(s) should you use?

(b) What is the minimum number of bits of ADC
resolution that should be used?

Answer

(a) The sampling rate must be greater than twice
the highest frequency. In this case 𝑓𝑠 >
2 × 100 kHz = 200 kHz (or 2 × 50 kHz =
100 kHz .

(b) If the noise is 0.5% of the signal power, then
𝑁/𝑆 = 0.005, 𝑆/𝑁 = 200 and 𝑆𝑁𝑅(𝑑𝐵) =
10 log(200) ≈ 23 dB (or 10 log(1000) ≈ 30 dB).
Solving the equation for quantization SNR
for the number of bits of resolution, 𝑛 =
(SNR(dB)−1.76)/6, and𝑛 = (23−1.76)/6 ≈ 3.54
so we should use 4 bits (or 𝑛 = (30−1.76)/6 ≈
4.71 so we should use 5 bits).

5

Question 9

For each term in the left column write the number
of the most appropriate match in the right column.
There is only one best match for each term.

Moore’s Law

ASIC

FPGA

fabless

wafer

die

NRE

SoC

LE

LUT

(1) programmable logic with 1000’s of flip-flops
(2) 300mm diameter
(3) made for a specific application
(4) historical rate of increase
(5) often a few square mm in area
(6) a memory storing output values
(7) LUT plus a flip-flop
(8) product development costs
(9) ASIC plus CPU
(10) most semiconductor companies

or:

(1) programmable logic with 1000’s of flip-flops
(2) often a few square mm in area
(3) most semiconductor companies
(4) historical rate of increase
(5) LUT plus a flip-flop
(6) a memory storing output values
(7) ASIC plus CPU
(8) product development costs
(9) 300mm diameter
(10) made for a specific application

Answer

Moore’s Law 4

ASIC 3

FPGA 1

fabless 10

wafer 2

die 5

NRE 8

SoC 9

LE 7

LUT 6

or:

Moore’s Law 4

ASIC 10

FPGA 1

fabless 3

wafer 9

die 2

NRE 8

SoC 7

LE 5

LUT 6

6

	Question 1
	Answer

	Question 2
	Answer

	Question 3
	Answer

	Question 4
	Answer

	Question 5
	Answer

	Question 6
	Answer

	Question 7
	Answer

	Question 8
	Answer

	Question 9
	Answer

