
ELEX 2117 : Digital Techniques 2
2025 Winter Term

Coding Guidelines

Mandatory Guidelines

It’s not enough that your design work. Marks will be
deducted if you do not follow the guidelines in this
section.

File‑level Comments

Include, near the beginning of each Verilog file, com-
ments showing: the file name, a line describing the
purpose of the file, the author’s name, and the date1.

Why? These help to quickly identify the source and
purpose of your code.

Example:
// lab1.sv
// Display digits of ID on 7−segment display.
// Jane Doe, 2020−9−15

Synchronous Design

Use a single clock. The same clock signal must ap-
pear in every always_ff @(posedge <clock>) ex-
pression. You can verify this by checking that this is
the only signal that appears as a Clock in Processing>
Compilation Report> Fitter> Resource Section>Control
Signals.

Why? Programmable hardware and design tools as-
sume synchronous (one clock) design. “Computed”
clocks, such as in the ripple counter below, are inef-
ficient and difficult to verify.

Example:
// NOT allowed:
always_ff @(posedge clk40) clk20 <= ~clk20 ;
always_ff @(posedge clk20) clk10 <= ~clk10 ;

1Don’t confuse this with the information on your report’s
cover page.

Example: A report showing multiple clocks:

logic Type

Use the logic type for synthesis.

Why? SystemVerilog’slogic can replace bothwire
and reg. Use it in new code.

Example:
// NOT allowed:
wire clk ;
reg [15:0] cnt ;

// OK:
logic clk ;
logic [15:0] cnt ;

Consistent Indentation

Indent statements within a module. Indent lines
that continue a statement. Each level of indentation
should increase by the same amount (no less than 3
and no more than 8). Avoid use of tab characters.

Why? This makes it much easier to find errors.

Example:
// NOT allowed:
module(...)
assign cnt_next =
cnt == 0 ? 25 :
cnt − 1 ;

always_ff @(posedge clk)
cnt <= cnt_next ;

endmodule

// OK:
module (...)

assign cnt_next =
cnt == 0 ? 25 :
cnt − 1 ;

always_ff @(posedge clk)
cnt <= cnt_next ;

endmodule

codingrules.tex 1 2025-01-05 23:46

Use always_ff

Use always_ff, not always, always_comb or
always_latch.

Why? To avoid unintended latches.

Example:
// NOT allowed:
always @(posedge clk)
cnt <= cnt_next ;

// OK:
always_ff @(posedge clk)
cnt <= cnt_next ;

Single Assignment in always_ff

An always_ff block must contain one statement: a
non-blocking assignment.
Don’t follow examples that use sequential state-

ments such as if or case within the always_ff.

Why? This ensures each always_ff in your code
corresponds to one register in your block diagram.
This helps you visualize the logic that will result from
your code.

Example:
// NOT allowed:
always_ff @(posedge clk) begin

if (cnt[15])
cnt <= cnt + 1'b1 ;

end

// OK:
always_ff @(posedge clk) cnt <=

cnt[15] ? cnt + 1'b1 : cnt ;

Recommended Guidelines

The following guidelines will make your code easier
to understand and help you avoid mistakes. How-
ever, their use won’t be marked.

Add comments next to port and signal declarations
and for non-obvious parts of your design. These
should explain why you’re doing something rather
than repeating what is obvious from the code. It
should be possible to figure out how your design
works just by reading the comments.

// AVOID redundant or missing comments:
module ...
(
input logic reset_n, clk, // active−low reset, clk
input logic [15:0] a, b, c,
...
// set usea to 1 if a>b and a<c or a>=c and a <=b
assign usea = a > b && a < c || a >= c && a <= b ;

// DO describe non−obvious signals and code
module ...
(
input logic reset_n, clk,
input logic [15:0] a, b, c, // filter inputs
...
// is a the median value?
assign usea = a > b && a < c || a >= c && a <= b ;

Use consistent signal naming to avoid confusion.
The following are widely-recognized conventions:

• append _n to active-low signals
• append _t to type names
• append _in to names of input ports that have a
corresponding internal signal such as a synchro-
nised or debounced version

• append _next to the name of a register output
to derive the name of the register input

Use enumerated types for states to make your code
easier to read and to help the synthesizer optimize the
design.
The garage door controller below is an example of

a state machine. The synthesizer will choose an ap-
propriate representation for the state variables.
module controller
(
input logic clk, pb_in, // clock, pushbutton
input logic top, bottom, // position sensors
output logic up, down // motor control
) ;

// declare and use an enum state type
typedef enum int unsigned

{ off, opening, closing } state_t ;
state_t state = off, state_next ;

logic pb ;
debounce db0 (pb_in, clk, pb) ;

always @(posedge clk) state <=
state == off && pb ?
(top ? closing : opening) :

state == opening && top ? off :
state == closing && bottom ? off :
state ;

assign up = state == opening ;
assign down = state == closing ;

endmodule

2

AI Tools

Generative AI software such as ChatGPT can indent
your code, find syntax errors, add comments, and
help explain how your design works – or why it
doesn’t.
However, do not rely on these program to write

your code because (1) you will need to write your
own code on the quizzes, exams, and some labs; and
(2) these programs are unlikely to generate code that
complies with the coding guidelines above without
significant prompting.
As always, credit any work that is not your own.

Youmust cite the source if you submit code generated
by AI software.

3

	Mandatory Guidelines
	File-level Comments
	Synchronous Design
	logic Type
	Consistent Indentation
	Use alwaysff
	Single Assignment in alwaysff

	Recommended Guidelines
	AI Tools

