
ELEX 2117 : Digital Techniques 2
2024 Winter Term

Solutions to Quiz 2

There were two versions of each question. The values and the answers for both versions are given below.

Question 1

Fill the table below with the value of each expres-
sion as a Verilog numeric literal including the correct
width and the correct value in hexadecimal base. As-
sume the following declarations:

logic [7:0] y ;
logic [3:0] x ;

and that y has the value 8'h9c (or 8'h63) and that
x has the value 4'b0110 (or 4'b1001). The first row
has been filled in as an example. You need not show
your work or draw another box around the answer

expression value

y[3:0]

x + y

x[2:1] ? y : !y

~ y[3:2] & 15

y >> 4 > ~ x

Answers

For y=8'h9c and x=4'b0110:

expression value

y[3:0] 4'hc

x + y 8'ha2

x[2:1] ? y : !y 8'h9c

~ y[3:2] & 15 32'hc (or 32'h0)

y >> 4 > ~ x 1'h0

and for y=8'h63 and x=4'b1001:

expression value

y[3:0] 4'h3

x + y 8'h6c

x[2:1] ? y : !y 8'h0

~ y[3:2] & 15 32'hf (or 32'h3)

y >> 4 > ~ x 1'h0

Unfortunately, the answer for the expression
~ y[3:2] & 15 gives a surprising result because
intermediate “context-dependent” values1 are ex-
tended to the width of the result before operators are
applied.
In the expression ~ y[3:2] & 15 the result has

32 bits (the larger of 2 and 32). When the ex-
pression y[3:2] is evaluated with a width of 32
the result is 32'h3 (or 32'h0) not 2'h3 (or 2'h0).
The bitwise complement is 32'hffff_fffc (or
32'hffff_ffff). When AND’ed with 15 (32'hf)
the result is 32'hc (or 32'hf). This detail was
not covered in Lecture 1 and so both answers were
marked correct.

Question 2

Write one always_ff statement and one assign
statement in the incomplete System Verilog module
below so that the module implements the following
state transition diagram:

00

00

01

10

10

11

x

!x

s

or:

00

00

01

01

10

11

x

!x

s

The diagram follows the course conventions: each
state bubble shows the value of st(ate) above the
value of o in that state; both in binary. Transitions are
labelled with expressions involving the inputs. Fol-
low the course coding guidelines but omit comments.

1Which operands are “context-dependent” and which are
“self-determined” depends on the operators.

quiz2sol.tex 1 2024-02-03 16:32

module q2
(input logic s, x, clock,
output logic [1:0] o) ;

logic [1:0] st ; // write your code below

endmodule

Answers

module q2_
(input logic s, x, clock,
output logic [1:0] o) ;

logic [1:0] st ; // write your code below

always_ff @(posedge clock)
st <= st == 2'b00 && s ? 2'b10 :

st == 2'b01 && x ? 2'b10 :
st == 2'b10 && !x ? 2'b01 :
st ;

assign o = st == 2'b00 ? 2'b00 :
st == 2'b01 ? 2'b10 :
2'b11 ;

endmodule

// or:

module q2
(input logic s, x, clock,
output logic [1:0] o) ;

logic [1:0] st ; // write your code below

// three state transitions

always_ff @(posedge clock)
st <= st == 2'b00 && s ? 2'b01 :

st == 2'b01 && !x ? 2'b10 :
st == 2'b10 && x ? 2'b01 :
st ;

// outputs for each state

assign o = st == 2'b00 ? 2'b00 :
st == 2'b01 ? 2'b01 :
2'b11 ;

endmodule

Quartus recognizes that this is a state machine and
generates the following schematics:

clock

s

x

st

clk

s

x

00

01

o[1]~not

o
0

11'h0

o[1..0]

clock

s

x

st

clk

s

x

00

01

o[0]~not

o
0

11'h0

o[1..0]

and the following state transition diagrams for the st
state machines:

Simulation waveforms for the first:

0 10 ps 20 ps 30 ps 40 ps 50 ps 60 ps

00 01 10 01
00 01 11 01

s
x
clock
st[1:0]
o[1:0]

and second versions:

0 10 ps 20 ps 30 ps 40 ps 50 ps

00 01 10 01
00 01 11 01

s
x
clock
st[1:0]
o[1:0]

2

	Question 1
	Answers

	Question 2
	Answers

