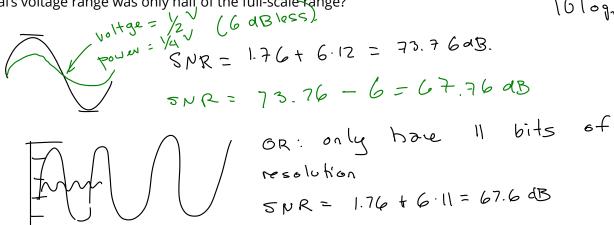
Analog Interfaces

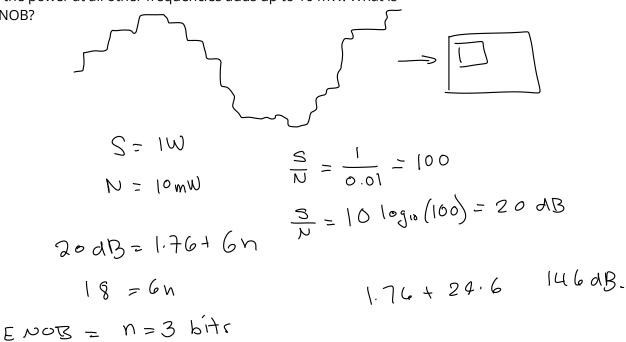
Exercise 1: Draw a sine wave and indicate two sets of sampling points at twice the frequency of the sine wave: one that demonstrates aliasing and one that does not. Is it sufficient to sample at twice the highest frequency of the analog signal?

somples are all zero

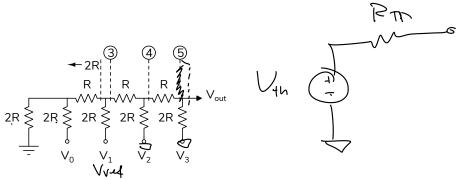
Exercise 2: What minimum sampling rate would be required to digitize a 10 kHz square wave if you wanted to include frequency components up to the 7'th harmonic (at 70 kHz)?


Exercise 3: A signal with range of ± 3 V must be quantized so that the quantization error is less than 1 mV. What minimum number of bits of resolution is required?

$$\Delta = 2mV$$
 $3 = 2mV = 2999$
 $V = 3 - (-3) = 6V$
 $V = 3 - (-3) = 6V$


Exercise 4: A signal-to-noise power ratio of about 48 dB is considered "good enough" for speech communication. Approximately how many bits per sample are required to obtain this quantization SNR?

$$\frac{5}{N}$$
 > 48dB
1.76 + 6n > 48
6n > 46
n > 8


Exercise 5: When quantizing a full-scale sine wave, what quantization SNR would be achieved with a resolution of 12 bits? What if the signal's voltage range was only half of the full-scale-range?

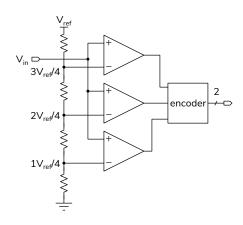
Exercise 6: A DAC outputs a digitized 1 kHz sine-wave signal. The analog output is analyzed and the power at 1 kHz is found to be 1 W while the power at all other frequencies adds up to 10 mW. What is the ENOB?

Exercise 7:

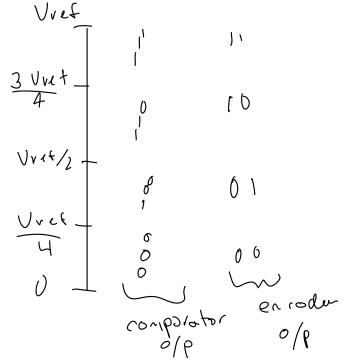
Assume V_1 is set to $V_{\rm ref}$ and all other inputs are zero (grounded). Find the Thevenim resistance (resistance to ground at $V_{\rm out}$ with all V_i shorted) and voltage ($V_{\rm out}$ with $V_1=V_{\rm ref}$). Hint: Do this at the labelled nodes.

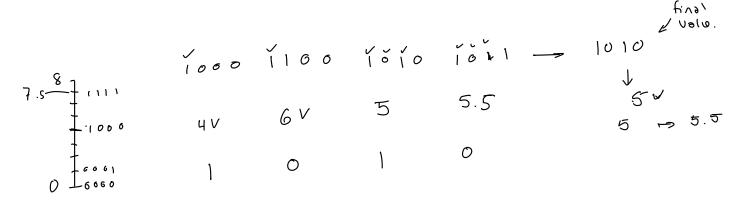
Exercise 8: You are using a PWM DAC to convert a 200 VDC supply to a 48 VDC output. The switching frequency is 25 kHz. What is the duration of each PWM pulse?

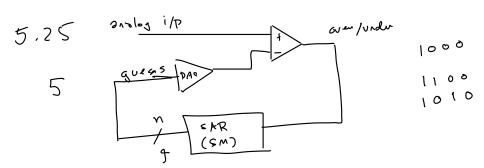
Wef=
$$\frac{1}{200}$$


$$\frac{1}{25 \times 10^{3}} = \frac{1}{25 \times 10^{3}} = 9.6 \mu s$$

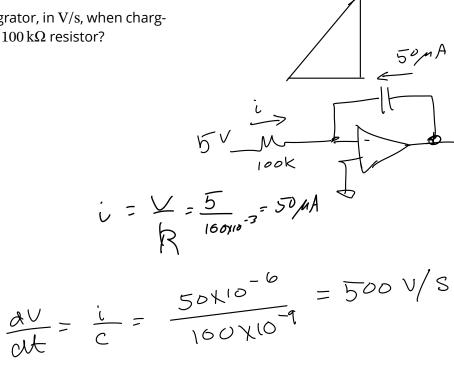
Exercise 9: You are designing a PWM DAC and need resolution of 1 mV with a full-scale output of 12 V. How many bits of resolution are required? The pulse frequency is 10 kHz. What is the clock frequency?

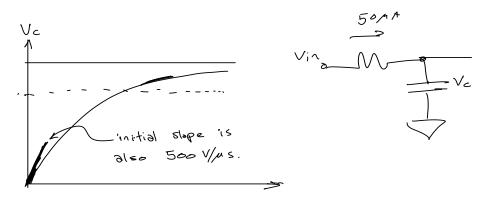

Exercise 10: Rank the different DACs described above in terms of sampling rate relative to clock rate and complexity relative to resolution


ution.	sompliquote clock vote	complexity issues
bindny weighted PWM Z-D	1 2° Varie 3	resistor matching. (I counter) clock rate clock rate


Exercise 11:

Draw a diagram showing the voltage ranges, the comparator outputs and the binary output for the 4-bit flash ADC above.


Exercise 13: What is the slope of an integrator, in V/s, when charging a 100 nF capacitor with 5 V through a $100\,k\Omega$ resistor?


$$C = 100 \times 10^{-9}$$

$$V = 5V$$

$$R = 100 \times 10^{3}$$

$$\frac{dQ}{dt} = i = c \frac{dV}{dt}$$

