

Implementation of Digital Logic Circuits

Exercise 1:

In which direction does the output current flow when the output is high? When it is low? Which transistors are on in each case?

Exercise 2:

Which of these specifications does the manufacturer guarantee? Which are requirements?

Exercise 3: A logic family has $V_{\rm OH}({\rm min})$ = 5 V, $V_{\rm OL}({\rm max})$ = 0.5 V, $V_{\rm IH}({\rm min})$ = 4 V and $V_{\rm IL}({\rm max})$ = 1.5 V. What are the noise margins?

Exercise 4: All else being equal, by how much would we expect to decrease power consumption when reducing logic levels from 5 V to 3.3 V? What would be the effect on power consumption in reducing the clock frequency from 50 MHz to 1 MHz?

Exercise 5: The energy stored in a battery (its "capacity") is measured in Watt-hours. If a circuit draws $100\,\text{mA}$ for $100\,\mu\text{s}$ per second and draws $100\,\text{mA}$ the rest of the time, how long will a $1000\,\text{mAh}$ battery last?

Exercise 6: What are the active-state current and the RC time constant for a wired-or interrupt-request line using a $10k\Omega$ resistor pulling up a circuit with 50 pF capacitance to 3.3 V?

Exercise 7: How many square mm of PCB area does each package require? Which packages have their pins accessible when the package is placed on the PCB?