
ELEX 2117 : Digital Techniques 2
2024 Winter Term

Simulation

This lecture describes how to use Verilog to simulate designs.
After this lecture you should be able to write a testbench that can: set initial values, generate clocks, read test vectors from
a file, display values, and terminate on a condition.

Simulation

In addition to using HDLs to design hardware, they
can also be used to test these designs by simulating
their operation. A simulation consists of the module
being tested (called the Design Under Test or DUT)
that is instantiated in another module called a test-
bench. The testbench applies inputs to the DUT and
checks its outputs:

testbench

DUT

stimulus
 inputs

response
 outputs

test vectors

Test Vectors

The inputs to the DUT and the corresponding ex-
pected outputs are called test vectors. These can be
generated by the testbench itself or they can be read
from a file.
Test vectors should include:

1. typical inputs,
2. minimum and maximum valid inputs,
3. invalid inputs, and
4. randomly-chosen values.

Exercise 1: Give examples of appropriate test inputs for each of
the above categories if youwere testing a circuit that computed the
square root of a 16‑bit signed number.

Verilog for Verification

The following Verilog features are useful for simula-
tion but can’t be synthesized (implemented in hard-
ware).

initial and always blocks

initial blocks execute once at the start of the sim-
ulation and are used to initialise signals. always
blocks execute continuously. begin and end are used
to group statements within these blocks (as with {
and } in C).

if/else/for/while

if/else, for, and while statements, whose syntax
is similar to C, can be used in initial or always
blocks. However, in HDL simulations control flow
is often based on conditions or events as described
below.

Delays

Placing #number before a statement delays1 execu-
tion by number simulation time. The suffixes ns and
us can be used for nano- and micro-seconds.
The syntax @(event) where event can be posedge

or negedge followed by a signal name or just the sig-
nal name delays execution until that signal edge or
until a change in that signal’s value.

wait

The wait(expression) statement pauses until the ex-
pression is non-zero.
Exercise 2: What’s the difference between wait(x) y='1; and
@(x) y='1;?

System Tasks

Functions beginning with $ are called system tasks.
Useful ones include:

• $display() similar to C’s printf(), can be
used to print values during a simulation;

1Delays are not synthesizable because delays cannot be easily
implemented in hardware.

lec4.tex 1 2024-02-09 09:39

0 1 us 2 us 3 us 4 us 5 us 6 us

3

00 01 02 03 04 05 07

xxxx 0000 0001 0004 0009 0000

0000 0001 0004 0008 0000

n=3

reset=1

clk=0

in[7:0]=00

out[15:0]=xxxx

out_[15:0]=0000

Figure 1: Simulation waveforms (from ex66.vcd).

• $dumpfile and $dumpvars record changes in
signals to a .vcd file for subsequent viewing
with a waveform viewer.

• $fopen() and $fscanf(), similar to the C li-
brary functions fopen() and fscanf(), can
open and read from text files.

• $finish and $stop terminate or suspend a sim-
ulation.

Example

The testbench below demonstrates the language fea-
tures described above.
The DUT is a module with an 8-bit input that out-

puts a 16-bit sum of all the odd-valued inputs since a
reset input was asserted. An initial block opens a
file containing test vectors, initializes the clock signal
and $stop’s the simulation at the end of the test vec-
tor file. Every 0.5 µs the clock is inverted; this creates
a 1MHz clock.
The final always block continuously reads and ap-

plies the input(s) from each test vector, waits for the
falling edge of the clock, and compares the DUT out-
put(s) to the value(s) read from the test vectors.

initial block executes here
inputs applied

outputs checked

time

(negedge clk)

clk

This examples changes the DUT input a half-cycle
before the rising edge of the clock and checks it a half-
cycle after. Delays can be added to change the timing.
The simulation code accesses the value of out

within the DUT using the notation <instance
name>.<signal name> (ex66_0.out in this case).
This violates the principles of modularity and “data
hiding” but can be useful for troubleshooting.

The test vectors are read from the file
ex66data.csv containing the following lines2:

1,0,0
0,1,1
0,2,1
0,3,4
0,4,4
0,5,8
1,7,0

Running this testbench using the Modelsim sim-
ulation program creates the waveform files shown in
Figure 1. The following lines are printed showing the
input, actual output and the expected output given in
the test vector:

test vector=1, 0, 0
DUT state = 0
test vector=0, 1, 1
DUT state = 1
test vector=0, 2, 1
DUT state = 1
test vector=0, 3, 4
DUT state = 4
test vector=0, 4, 4
DUT state = 4
test vector=0, 5, 8
DUT state = 9
***Error: 5, 9, 8
test vector=1, 7, 0
DUT state = 0
test vector=1, 7, 0

Exercise 3: How could you:

(a) terminate the simulation if a test vector failed?
(b) change the clock frequency to 10 MHz?
(c) print each test vector as it’s read?
(d) assert the reset input for two clock cycles?

2This file is in Comma Separated Values (.csv) format.

2

https://en.wikipedia.org/wiki/Value_change_dump
https://en.wikipedia.org/wiki/Comma-separated_values

// output cumulative sum of odd-valued inputs

module ex66
(input logic reset, clk,
input logic [7:0] in,
output logic [15:0] out) ;

always_ff @(posedge clk)
out <= reset ? '0 :

in & 1 ? out+in : out ;

endmodule

// example testbench

module ex66_tb ;

// DUT inputs and outputs
logic reset, clk ;
logic [7:0] in ;
logic [15:0] out, out_ ;

// file descriptor and number of values by fscanf()
integer fd, n ;

// instantiate DUT
ex66 ex66_0 (.*) ;

// initialization
initial begin

// record all signals in a .vcd file
$dumpfile("ex66.vcd") ;
$dumpvars ;

// initialize clock
clk = '0 ;

// open the test vector file
fd = $fopen("ex66data.csv","r") ;

// stop at end of file or error
wait (n < 0) $stop ;

end

// generate 1 MHz clock (2x500ns period)
always #0.5us clk = ~clk ;

// continuously apply input, wait, & check output
always begin

// read & set DUT inputs; display test vector
n = $fscanf(fd,"%d,%d,%d", reset, in, out_) ;
$display ("test vector=%d,%d,%d",reset,in,out_) ;

// on falling clock edge
@(negedge clk) begin

// display DUT internal signals; check outputs
$display ("DUT state = %d", ex66_0.out) ;
if (out != out_) begin
$display("***Error: %d, %d, %d",in,out,out_);

end
end

end

endmodule

3

	Simulation
	Test Vectors
	Verilog for Verification
	initial and always blocks
	if/else/for/while
	Delays
	wait
	System Tasks

	Example

