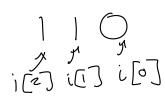

Introduction to Digital Design with Verilog HDL

Exercise 1: What changes would result in a 3-input OR gate?


Exercise 2: What schematic would you expect if the statement was assign y = (a ^ b) | c :?

Exercise 3: If the signal **i** is declared as **logic** [2:0] **i**;, what is the 'width' of **i**?

If i has the value 6 (decimal), what is the value of i[2]?

1

Of i[0]?

Ο.

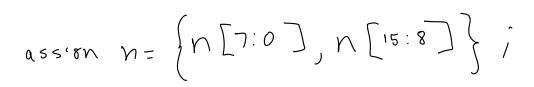
Exercise 4: What are the widths and values, in decimal, of the fol-

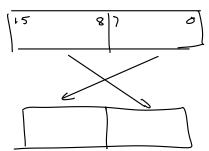
Exercise 5: What are the values of the following expressions:

14'6010?
$$|'b0| = |'h0|$$

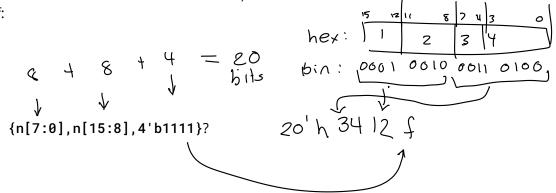
-4'6010? $|'b0| = |'h0|$

(or - reduction)


-4'61001? $|'h0| = |'h0|$

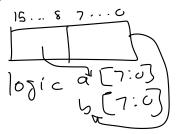

(xor - reduction)

84'61111? $|'h| = |'h0|$


84'61110? $|'h| = |'h0|$

Exercise 6: Use slicing and concatenation to compute the byteswapped value of an array n declared as logic [15:0] n.

Exercise 7: If **n** has the value **16** ' **h1234**, what is the value and width



Exercise 8: Use concatenation to shift **n** left by two bits.

n [15:07

Exercise 9: Use concatenation to assign the high-order byte of $\bf n$ to $\bf a$ and the low-order byte to $\bf b$.

assign
$$\{a,b\} = n;$$
some result as
assign $a = n[16:8];$
assign $b = n[7:0];$

Exercise 11: An array declared as logic [15:0] n; and has the value 16'h1234. What are the values and widths of the following expressions?

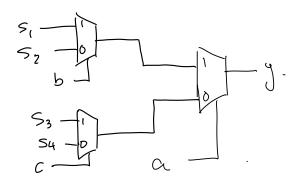
$$\sim n[3:0]$$
 $4'b1011 = 4'hb$

$$\frac{n + 1'b1}{|b|} \frac{|b'|}{|b'|} \frac{|b'|} \frac{|b'|}{|b'|} \frac{|b'|}{|b'|} \frac{|b'|}{|b'|} \frac{|b'|}{|b'|} \frac{|$$

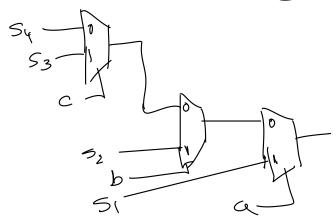
$$n = 16'h1234$$

$$\frac{16'h1234}{\frac{16'h234}{16'heqcb}} = \frac{0001 0010 0011 0100}{\frac{1111 1111 1111}{1110 1111}} = \frac{xor inverts}{(negstes) each}$$

$$\frac{16'h1234 8 \times 1'h0}{\frac{1111 1111}{1110 1111}} = \frac{xor inverts}{(negstes) each}$$


$$\frac{1111 1111 1111}{\frac{1111}{1110 1111}} = \frac{xor inverts}{(negstes) each}$$

Exercise 12: What are the width and value of the expression: 3 ? 16'd10: 8'h20?


If \mathbf{x} has the value 0, what is the value of the expression: 1'b1: 1'b0?

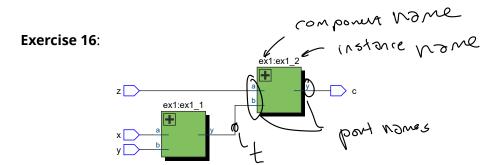
If x has the value
$$\frac{-1}{2}$$
 $\frac{1}{2}$ $\frac{1}$

Exercise 13: Draw the schematics corresponding to:
$$y = a$$
 (b ? $\underline{s1}$: $\underline{s2}$) : (c ? $\underline{s3}$: $\underline{s4}$);

$$y = 2.51$$
:
 $b. ? 52$:
 $c. ? 53:54$

Exercise 14:

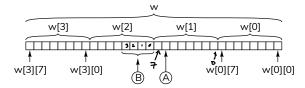
assign
$$y = a + 1$$
;


Some software warns about truncation. How could you re-write the assign statement to avoid such a warning?

Use assign
$$y = a + b$$
;

Exercise 15: Write an always_ff statement that toggles (inverts) its output on each rising edge of the clock.

alway-ff @ (posedge clk)
$$q \le Nq \quad j$$


$$(or ! f \quad q \text{ is } 1 \text{ bit})$$

Identify the following in the diagram above: component names, component "instance names," component port names, module port names. Label the signal **t** in the schematic.

Exercise 17: Rewrite the **ex60** module using operators. Which version – "structural" or "behavioural" – is easier to understand?

Exercise 18:

W [1] [6] How would you specify the bit marked A in the diagram above?

The bits marked B? $\omega [2][3:0]$

w [0] The least-significant byte?

Exercise 19:

```
X 15 4 bits: 4'60011
                                           y 15 8 bits: 8' b 1010 (010

2 is 2×4 (ouptol) by (3 hounto 6)
// concatenation:
logic [3:0] x = \{ 2'b00, 2'b11 \} ;
// replication (z=8'b1010_1010):
logic [7:0] y = \{ 4\{2'b10\} \} ;
// arrav literal
                                                 Value 15 4 (60611, 41610)0
logic [0:1] [3:0] z = '\{ 4'b0011, 4'b1010 \} ;
```

What are the dimensions and initial values of x, y, and z in the examples above?

another example: if
$$logic [3:0][7:0] \times = \frac{1}{2} [1,2,3,4]$$
;

$$1 = \frac{1}{2} [1,2,3,4]$$

$$1 = \frac{1}{2} [$$