
ELEX 2117 : Digital Techniques 2
2024 Winter Term

Simulation

Rev. 1: Fixed name of output signal (to “detected”) in list of test vectors.

Introduction

In this lab you will design and simulate a sequence
detector.
As discussed in the lectures, a sequence detector

can be implemented in different ways. One way is to
use a shift register to store previous inputs. Another
is to count the number of consecutive correct digits.
You may use any implementation that you wish.

Requirements

The sequence detector has one-bit reset and clk
clock inputs, a 4-bit digit input, and a one-bit
detected output:

clk

digit

detected
4

lab5

reset

detected should be assertedwhen a the last four dig-
its of your BCIT ID are present on digit on succes-
sive rising edges of clk. detected should remain
asserted for one clock cycle. Your sequence detector
should reset itself if reset is asserted on the rising
edge of clk.
Your test vector file should include 15 lines with

one test vector per line. Each test vector should have
three values: the input values of reset and digit,
and the expected output value of detected. Your
testbench should generate clk. Use the following
test vectors:

1. A test vector with reset asserted.
2. The sequence of digits 1, 2, 3, 4. In this case

detected should not be asserted since no stu-
dent’s ID ends in 1234.

3. The correct sequence of digits for your BCIT ID
with an additional (incorrect) digit inserted be-
fore the last digit. For example if you ID ends in

4321 you might use the sequence 43221 in your
test vector.

4. The correct sequence (the last four digits of your
ID). For example, 4321.

5. An additional test vector with detected set to
1. This should cause an error message to be
printed.

The sample simulation code applies the inputs
from each test vector and waits for the next falling
edge (i.e. after a rising edge) before testing the DUT
output. Thus the expected output in each test vector
should correspond to the expected output for that in-
put.

Procedure

Write a module that implements the sequence detec-
tor module described above and a testbench that ap-
plies test vectors read from a .csv file. You should be
able to use the example testbench in the lecture notes
with a few appropriate changes. Remember to follow
the course coding guidelines, including adding the
appropriate comment at the beginning of each file.
Your testbench should print:

• Each test vector as it is read from the file.
• The state of your sequence detector module
(even though it is not an output of your mod-
ule). This state will depend on your design and
might be a count value or the values in a shift
register.

• An error message if there are mismatches be-
tween the expected and actual outputs. See the
example testbench for an example.

You can create the.csvfile containing the test vec-
tors using a text editor such as Notepad. You can also
use a spreadsheet and export the test vectors to a .csv
file1.

1But don’t use a UTF-8 (Unicode) output encoding.

lab5.tex 1 2024-02-20 15:10

Figure 1: Simulation waveforms (Modelsim screen capture).

0 1 us 2 us 3 us 4 us 5 us 6 us 7 us 8 us 9 us 10 us 11 us 12 us 13 us 14 us 15 us

0 1 2 3 4 3 2 1 4 3 2 1 0

reset
clk
digit[3:0]
detected

Figure 2: Simulation waveforms (GTKWave).

Follow the procedure in the Software Installation
and Use document and the video on the course web
site to create a simulation project, add the file(s)2
with your modules to the project and compile them.
Copy the test vector file to the project folder. Add the
reset, clk, and detect signals to theWave window.
Run the simulation. The Transcript window should
show any messages generated by the testbench and
theWavewindow should show the signal waveforms.

Report

Submit a PDF file to the appropriate Assignment
folder that includes the following:

• Listing(s) of your DUT and testbench modules.
• A screen capture of the simulation waveforms
similar to that in Figure 1 or Figure 2. Set the
display radix for the digit waveform to deci-
mal3.

• A screen capture of the Transcript window
showing themessages generated by running the
simulation. For example:

run -all
test vector=1, 0,0
DUT state = ffff
test vector=0, 1,0
DUT state = fff1
test vector=0, 2,0

2You may put the DUT and testbench modules in different
files or in the same file.

3Right-click on the waveform name and select Radix / Deci-
mal

DUT state = ff12
test vector=0, 3,0
DUT state = f123
test vector=0, 4,0
DUT state = 1234
test vector=0, 4,0
DUT state = 2344
test vector=0, 3,0
DUT state = 3443
test vector=0, 2,0
DUT state = 4432
test vector=0, 2,0
DUT state = 4322
test vector=0, 1,0
DUT state = 3221
test vector=0, 4,0
DUT state = 2214
test vector=0, 3,0
DUT state = 2143
test vector=0, 2,0
DUT state = 1432
test vector=0, 1,1
DUT state = 4321
test vector=0, 0,1
DUT state = 3210
***Error: 0, 0, 1
test vector=0, 0,1
** Note: $stop : /home/edc/202410/lab5.sv(99)
Time: 15 us Iteration: 2 Instance: /lab5_tb
Break in Module lab5_tb at /home/user/202410/lab5.sv line 99

Appendix ‑ Simulation Not Terminating?

The documentation for the system task $fscanf is
the SystemVerilog standard which is available on the
course website under Content / Resources / Verilog /
IEEE-1800-2012. It’s a huge document so you’ll want
to search for the string $fscanf. The return value is:

The number of successfully matched and as-
signed input items is returned in code; this
number can be 0 in the event of an early
matching failure between an input charac-
ter and the control string. If the input ends

2

before the first matching failure or conver-
sion, EOF (-1) is returned.

The value assigned to n in the always block ismon-
itored by the wait in the initial block. When the end
of the file is reached, n is set to -1 and the simulation
$stops.
If the simulation is not terminating, then it’s

likely that $fscanf is returning 0. Check this by
$display’ing n each time through the loop.
If this is the case, then it’s likely due to a mis-

match between the format (“control”) string supplied
to $fscanf and what appears in your .csv file. A
common reason is that your format string includes
commas and your file does not, or vice-versa. An-
other possibility is that your file includes characters
that cause the pattern match to fail. An example is a
Unicode Byte Order Mark (BOM) at the start of a file
thatmakes the file lookOK in a text editor but cannot
be read by (Unicode-unaware) $fscanf. To resolve
such problems, try creating your .csv file “by hand”
using a text editor such as Notepad[++].

3

	Introduction
	Requirements
	Procedure
	Report
	Appendix - Simulation Not Terminating?

