Solutions to Quiz 3

Question 1

The table(s) below shows part of the datasheet for a 74LS-series IC. What are the high- and low-level noise margins?

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

		Min	Max	
VIH	Input HIGH Voltage	2.0		V
VIL	Input LOW Voltage		0.8	٧
VOH	Output HIGH Voltage	2.7		V
VOL	Output LOW Voltage		0.5	V

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

		Min	Max	
VIH	Input HIGH Voltage	2.2		٧
VIL	Input LOW Voltage		0.8	٧
VOH	Output HIGH Voltage	2.7		٧
VOL	Output LOW Voltage		0.4	V

Answers

The high and low-level noise margins are (note the corrections to the min/max notation for the equations in Lecture 7):

- noise margin(low) = $V_{IL(max)} V_{OL(max)}$
- noise margin(high) = $V_{OH(min)} V_{IH(min)}$

For the first example the high-level noise margin is $2.7 - 2.0 = \boxed{0.7 \, \text{V}}$ and the low-level noise margin $0.8 - 0.5 = \boxed{0.3 \, \text{V}}$.

For the first example the high-level noise margin is $2.7 - 2.2 = \boxed{0.5 \text{ V}}$ and the low-level noise margin $0.8 - 0.4 = \boxed{0.4 \text{ V}}$.

Question 2

What logic function is implemented by the circuit on the right? Give your answer as a Boolean logic expression for Y involving A, B and C.

Answers

For the first circuit, if any of the transistors are turned on the output is pulled low. Thus the logic function is a 3-input NOR gate: $Y = \overline{A+B+C}$.

For the second circuit, all of the transistors must be turned on for the output to be pulled low. Thus the logic function is a 3-input NAND gate: $Y = \overline{A \cdot B \cdot C}$.

Question 3

You are designing a circuit with an open-collector output. The rise-time time constant must be less than $100\,\mu s$. The total capacitance to ground on this output is 35 (or 60) pF. What is the highest resistance that you can use for the pull-up resistor?

Answers

The time constant of the circuit is $\tau=RC$ and C is given as 35 pF (or 60 pF). To keep the time constant to less than 100 μ s the resistance must be kept to less than $R={}^{100\,\mu\text{s}/35\,\text{pF}}={}^{100\times10^{-6}/35\times10^{-12}}\approx\boxed{2.9\,\text{M}\Omega}$ (or $\boxed{1.7\,\text{M}\Omega}$).