ELEX 2117 : Digital Techniques 2
2023 Winter Term

MIDTERM EXAM 1
15:30-17:20
Friday, February 3, 2023
SW01-1205

This exam has five (5) questions on two (2) pages. The marks for each question are as indicated. There are a total of twenty-two (22) marks. Answer all questions. Write your answers and all rough work in this paper and nowhere else. Show your work. Draw a box around your final answer. Numerical answers must include units. Books and notes are allowed. No electronic devices other than calculators are allowed. Show your work.

This exam paper is for:
Sample Exam 1 a00123456

Each exam is equally difficult.
Answer your own exam.
Do not start until you are told to do so.

Name: \qquad

BCIT ID: \qquad

Signature:

Fill the table below with the value of each expression as a Verilog numeric literal including the correct width and the correct value in hexadecimal base. Assume the following declarations:
logic [7:0] a ;
logic [3:0] b ;
and that a has the value 8 ' h 33 and that b has the value 4 'b1001. The first row has been filled in as an example.

expression	value
$a[3: 0]$	$4 ' \mathrm{~h} 5$
$\mathrm{a}+8^{\prime} \mathrm{b} 1$	
$\left\{\mathrm{a}[3: 0], 2^{\prime} \mathrm{b} 2\right\}$	
$\mathrm{b} \ll(\mathrm{b}!=0)$	
$\sim \mathrm{b}[0] ? \mathrm{~b}[1]:(\mathrm{b}[2] ? \mathrm{~b}[3]: 4)$	

Question 2

A counter is used to implement a delay of 10 milliseconds. The clock used to decrement the counter has a frequency of 10 MHz . If the counter counts down to zero, what initial value should be loaded into the counter? Show your work.

Question 3
4 marks

A state machine has three 1-bit inputs named \mathbf{r}, \mathbf{s}, and t ; and a 2-bit output named out that is also the state. out can take on the binary values $\mathbf{0 0}, \mathbf{0 1}$, and $\mathbf{1 0}$. The state machine operates as follows:

- If out is any value and \mathbf{r} is asserted (has the value 1) then out is set to 00 .
- If out is 00 and \mathbf{s} is asserted then out is set to 10 .
- If out is 10 and t is asserted then out is set to 01 .
- If out is 01 and t is asserted then out is set to 10 .
- In all other cases the state does not change.

Write a state transition table for this state machine. Include columns for the current state, the \mathbf{r}, \mathbf{s}, and t inputs and the next state. Hint: use X as don't care

Draw the state transition diagram for the state machine described in the previous question. Follow the course guidelines.

Write a System Verilog module named midterm that implements a state machine with the following state transition table:

State	inputs			Next State
	a	b	C	
X	X	X	1	2'd1
2'd1	X	X	0	2'd2
2'd2	1	1	X	2'd3
2'd3	0	1	X	2'd2

Conditions that are not listed do not result in a change of state.
The module should have three 1-bit input signals named \mathbf{a}, \mathbf{b}, and \mathbf{c}; a 1-bit output named \mathbf{o}; and an input clock signal named clock. The output o is only asserted in state $\mathbf{2}^{\prime} \mathrm{d} 2$. Follow the course coding guidelines.

2023 Winter Term

MIDTERM EXAM 1

15:30-17:20
Friday, February 3, 2023
SW01-1205

This exam has five (5) questions on two (2) pages. The marks for each question are as indicated. There are a total of twenty-two (22) marks. Answer all questions. Write your answers and all rough work in this paper and nowhere else. Show your work. Draw a box around your final answer. Numerical answers must include units. Books and notes are allowed. No electronic devices other than calculators are allowed. Show your work.

This exam paper is for:

Sample Exam 2 A01234567

Each exam is equally difficult.
Answer your own exam.
Do not start until you are told to do so.

Name: \qquad

BCIT ID: \qquad

Signature:

Fill the table below with the value of each expression as a Verilog numeric literal including the correct width and the correct value in hexadecimal base. Assume the following declarations:
logic [7:0] a ;
logic [3:0] b ;
and that a has the value 8 ' ha5 and that b has the value 4 'b0110. The first row has been filled in as an example.

expression	value
a[3:0]	4' h5
a+8' b1	
\{a[3:0],2'b2\}	
$b \ll(b!=0)$	
~b[0]?b[1]:(b[2]?b[3]:4)	

Question 2

A counter is used to implement a delay of 5 milliseconds. The clock used to decrement the counter has a frequency of 20 MHz . If the counter counts down to zero, what initial value should be loaded into the counter? Show your work.

Question 3
4 marks

A state machine has three 1-bit inputs named \mathbf{r}, \mathbf{s}, and \mathbf{t}; and a 2-bit output named out that is also the state. out can take on the binary values $\mathbf{1 1 , 0 1}$, and $\mathbf{1 0}$. The state machine operates as follows:

- If out is any value and \mathbf{r} is asserted (has the value 1) then out is set to 11 .
- If out is 11 and \mathbf{s} is asserted then out is set to 10 .
- If out is 10 and t is asserted then out is set to 01 .
- If out is 01 and t is asserted then out is set to 10 .
- In all other cases the state does not change.

Write a state transition table for this state machine. Include columns for the current state, the \mathbf{r}, \mathbf{s}, and t inputs and the next state. Hint: use X as don't care

Draw the state transition diagram for the state machine described in the previous question. Follow the course guidelines.

Write a System Verilog module named midterm that implements a state machine with the following state transition table:

State	inputs			Next State
	a	b	C	
X	X	X	1	2'd1
2'd1	X	X	0	2'd2
2'd2	1	1	X	2'd3
2'd3	0	1	X	2'd2

Conditions that are not listed do not result in a change of state.
The module should have three 1-bit input signals named \mathbf{a}, \mathbf{b}, and \mathbf{c}; a 1-bit output named \mathbf{o}; and an input clock signal named clock. The output o is only asserted in state $\mathbf{2}^{\prime} \mathrm{d} 3$. Follow the course coding guidelines.

