Implementation of Digital Logic Circuits

Exercise 1:

Which transistors are on when the output is high? When it is low? In which direction does the output current flow in each case?

Exercise 2:

Which of these specifications does the manufacturer guarantee? Which are requirements?

Exercise 3: A logic family has $V_{\rm OH}({\rm min})$ = 5 V, $V_{\rm OL}({\rm max})$ = 0.5 V, $V_{\rm IH}({\rm min})$ = 4 V and $V_{\rm IL}({\rm max})$ = 1.5 V. What are the noise margins?

Exercise 4: All else being equal, by how much would we expect to decrease power consumption when reducing logic levels from 5 V to 3.3 V? What would be the effect on power consumption in reducing the clock frequency from 50 MHz to 1 MHz?

$$\frac{P_z}{P_l} = \left(\frac{V_z}{V_l}\right)^2 = \left(\frac{3.3}{5}\right)^2 \approx 0.44$$
reduction = 1-0.44 = 56%

$$\frac{P_2}{P_1} = \left(\frac{1}{50}\right) = 0.02$$
reduction = 1-0.02 = 98%

Exercise 5: What are the active-state current and the RC time constant for a wired-or interrupt-request line using a $10k\Omega$ resistor pulling up a circuit with 50 pF capacitance to 3.3 V?

$$i = \frac{V}{R} = \frac{3.3-0}{10 \text{ K}} = \frac{0.3 \text{ mA}}{10 \text{ K}}$$

$$RC = 10 \times 10^{3} \cdot 50 \times 10^{-12} \quad s$$

$$= 500 \times 10^{-7} \quad 5$$

$$= 0.5 Ms$$

Exercise 6: How many square mm of PCB area does each package require? Which packages have their pins accessible when the package is placed on the PCB?

TAFP

BGA

12 mm²

18 mm²

TGFP NOS