Timing Analysis

Exercise 1:

The diagram above shows an oscilloscope screen capture that includes one period of an active-low digital waveform. The scale on the horizontal axis is 20 ns per division. What are: the rise time, period, positive pulse width and duty cycle?

rise time = 1 dN. = 20ns.

period =
$$6.5 \, \text{dN} = 6.5 \, \text{x}_{20} = 130 \, \text{ns}$$
.

+ve pulse width = $4 \, \text{dN} = 4.20 = 80 \, \text{ns}$.

-we pulse width = $2.5 \, \text{dN} = 7.5 \, \text{x}_{20} = 50 \, \text{ns}$.

duty cycle = $\frac{50}{130} \approx 38 \, \%$

Exercise 2:

Label the specifications A through D as requirements or guaranteed responses. Which specifications are measured to a signal being in a high-impedance state? Which are measured from a rising edge only? From either?

Exercise 4: Is t_{SU} a requirement or a guaranteed response? How about t_{H} ?

Exercise 5:

$$t_{\text{SU}}$$
 (avail) = T_{Clock} - t_{CO} (max) - t_{PD} (max)

Which of the specifications in the formula above decrease the available setup time as they increase? Which increase it?

Exercise 6: For a particular circuit f_{clock} is 50 MHz, t_{co} is 2 ns (maximum), the worst-case (maximum) t_{PD} in a circuit is 15 ns and the minimum setup time requirement is 5 ns. What is the setup time slack? Will this circuit operate reliably? If not, what it the maximum clock frequency at which it will?

Exercise 7: What is the maximum clock frequency for a counter using flip-flops with 200 ps setup times, 50 ps hold times and adder logic that has a 250 ps propagation delay?

$$t_{so} = 200 \, \text{ps} \quad (\text{reg/a})$$

$$t_{n} = 50 \, \text{ps} \quad (\text{max})$$

$$t_{po} = 250 \, \text{ps} \quad (\text{max})$$

$$t_{so} (\text{avail}) = T_{clock} - t_{co}(\text{max}) - t_{po}(\text{max})$$

$$t_{so} (\text{avail}) = T_{clock} - t_{co}(\text{max}) - t_{po}(\text{max})$$

$$t_{so} (\text{avail}) = t_{so} (\text{reg/d})$$

$$t_{ce} \cdot t_{so} (\text{avail}) = t_{so} (\text{reg/d})$$

$$t_{co} \cdot (\text{max}) = t_{so} (\text{reg/d}) + t_{co} \cdot (\text{max}) + t_{po} \cdot (\text{max})$$

$$t_{so} \cdot (\text{avail}) = t_{so} \cdot (\text{reg/d}) + t_{co} \cdot (\text{max}) + t_{po} \cdot (\text{max})$$

$$t_{so} \cdot (\text{avail}) = t_{so} \cdot (\text{reg/d}) + t_{co} \cdot (\text{max}) + t_{po} \cdot (\text{max})$$

$$t_{so} \cdot (\text{avail}) = t_{so} \cdot (\text{reg/d}) + t_{co} \cdot (\text{max}) + t_{po} \cdot (\text{max})$$

$$t_{so} \cdot (\text{avail}) = t_{so} \cdot (\text{reg/d}) + t_{co} \cdot (\text{max}) + t_{po} \cdot (\text{max})$$

$$t_{so} \cdot (\text{avail}) = t_{so} \cdot (\text{reg/d}) + t_{co} \cdot (\text{max}) + t_{po} \cdot (\text{max})$$

$$t_{so} \cdot (\text{avail}) = t_{so} \cdot (\text{reg/d}) + t_{co} \cdot (\text{max}) + t_{po} \cdot (\text{max})$$

$$t_{so} \cdot (\text{avail}) = t_{so} \cdot (\text{reg/d}) + t_{co} \cdot (\text{max}) + t_{po} \cdot (\text{max})$$

$$t_{so} \cdot (\text{avail}) = t_{so} \cdot (\text{reg/d}) + t_{co} \cdot (\text{max}) + t_{po} \cdot (\text{max})$$

$$t_{so} \cdot (\text{avail}) = t_{so} \cdot (\text{reg/d}) + t_{co} \cdot (\text{max}) + t_{po} \cdot (\text{max})$$

$$t_{so} \cdot (\text{avail}) = t_{so} \cdot (\text{avail}) + t_{co} \cdot (\text{avail}) + t_{po} \cdot (\text{avail})$$

$$t_{so} \cdot (\text{avail}) = t_{so} \cdot (\text{avail}) + t_{co} \cdot (\text{avail}) + t_{po} \cdot (\text{avail})$$

$$t_{so} \cdot (\text{avail}) = t_{so} \cdot (\text{avail}) + t_{to} \cdot (\text{avail}) + t_{to} \cdot (\text{avail})$$

$$t_{so} \cdot (\text{avail}) = t_{so} \cdot (\text{avail}) + t_{to} \cdot (\text{avail}) + t_{to} \cdot (\text{avail})$$

$$t_{so} \cdot (\text{avail}) = t_{so} \cdot (\text{avail}) + t_{to} \cdot (\text{avail})$$