
ELEX 2117 : Digital Techniques 2
2023 Winter Term

Simulation

This lecture describes how to use Verilog to simulate designs.
After this lecture you should be able to write a testbench that can: set initial values, generate clocks, read test vectors from
a file, display values, and terminate on a condition.

Simulation

Verilog can be used to test HDLdesigns by simulating
their operation. A simulation consists of the module
being tested (called the Design Under Test or DUT)
that is instantiated in another module called a test-
bench. The testbench applies inputs to the DUT and
checks its output:

testbench

DUT

stimulus
 inputs

response
 outputs

test vectors

Test Vectors

The inputs to the DUT and the corresponding ex-
pected outputs are called test vectors. These can be
generated by the testbench itself or they can be read
from a file. Test vectors should generally include:

1. typical inputs,

2. minimum and maximum valid inputs,

3. invalid inputs, and

4. randomly-chosen values.

Exercise 1: Give examples of appropriate test inputs for each of
the above categories if youwere testing a circuit that computed the
square root of a 16‑bit signed number.

Verilog for Verification

The following Verilog features are useful for simula-
tion but can’t be synthesized (implemented in hard-
ware).

initial and always blocks

initial blocks execute once at the start of the sim-
ulation and are used to initialise signals. always
blocks execute continuously. begin and end are used
to group statements in these blocks (as with { and }
in C).

if/else/for/while

if, else, for and while statements, whose syntax
is similar to C, can be used in initial or always
blocks.

Delays

Placing #number before a statement delays1 execu-
tion by number simulation time. The suffixes ns and
us can be used for nano- and micro-seconds.
The syntax @(event) where event can be posedge

or negedge before a signal name or just a signal name
delays execution until that signal edge or a change in
that signal value.

wait

The wait(expression) statement pauses until the ex-
pression is non-zero.
Exercise 2: What’s the difference between wait(x) y='1; and
@(x) y='1;?

System Tasks

Functions beginning with $ are called system tasks.
Useful ones include:

• $display() similar to C’s printf(), can be
used to print values during a simulation;

1Delays are not synthesizable because delays cannot be easily
implemented in hardware.

lec4.tex 1 2023-02-13 21:30

0 1 us 2 us 3 us 4 us 5 us 6 us 7 us

3

00 01 02 03 04 05 07

xxxx 0000 0001 0004 0009 0000

0000 0001 0004 0009 0000

n

reset

clk

in[7:0]

out[15:0]

out_[15:0]

Figure 1: Simulation waveforms (from ex66.vcd).

• $dumpfile and $dumpvars record changes in
signals to a .vcd file for subsequent viewing
with a waveform viewer.

• $fopen() and $fscanf(), similar to the C li-
brary functions fopen() and fscanf(), can
open and read from text files.

• $finish and $stop terminate or suspend a sim-
ulation.

Example

The testbench below demonstrates the language fea-
tures described above.
The DUT is a module with an 8-bit input that out-

puts a 16-bit sum of all the odd-valued inputs since
a reset input was asserted. On each falling edge of
the clock the testbench checks the current output and
reads another test vector from a file. Each line of the
file contains the (reset and input) input values and
the expected output values.
// output cumulative sum of odd−valued inputs

module ex66
(input logic reset, clk,
input logic [7:0] in,
output logic [15:0] out) ;

always_ff @(posedge clk)
out <= reset ? '0 :

in & 1 ? out+in : out ;

endmodule

// example testbench

module ex66_tb ;

// DUT inputs and outputs
logic reset, clk ;
logic [7:0] in ;
logic [15:0] out, out_ ;

// instantiate DUT
ex66 ex66_0 (.*) ;

// file descriptor and number of values read
integer fd, n=0 ;

initial begin

// record all signals in a .vcd file
$dumpfile("ex66.vcd") ;
$dumpvars ;

// initialize signals
{reset, clk} = '0 ;

// open the test vector file
fd = $fopen("ex66data.csv","r") ;

// wait for error or end of file
wait (n < 0) $stop() ;

end

// 1 MHz clock (2x500ns period)
always #0.5us clk = ∼clk ;

// check outputs and change inputs on
// each falling clock edge
always @(negedge clk) begin

if (out != out_)
$display("Error: %d %d %d", in, out, out_) ;

n = $fscanf(fd,"%d,%d,%d",reset,in,out_) ;
end

endmodule

The test vectors are read from the file
ex66data.csv containing the following lines2:

1,0,0
0,1,1
0,2,1
0,3,4
0,4,4
0,5,8
1,7,0

Running this testbench using the Modelsim simu-
lation program creates the waveform files shown in
Figure 1 and, since the test vector contains an error,
the following line is printed showing the input, ac-
tual output and the expected output given in the test
vector:

Error: 5 9 8

Exercise 3: How could you:

(a) terminate the simulation if a test vector failed?

2This file is in Comma Separated Values (.csv) format.

2

https://en.wikipedia.org/wiki/Value_change_dump
https://en.wikipedia.org/wiki/Comma-separated_values

(b) change the clock frequency to 10 MHz?
(c) print each test vector as it’s read?
(d) assert the reset input for two clock cycles?

3

	Simulation
	Test Vectors
	Verilog for Verification
	initial and always blocks
	if/else/for/while
	Delays
	wait
	System Tasks

	Example

