
ELEX 2117 : Digital Techniques 2
2023 Winter Term

State Machines

This lecture defines state machines and describes how to document them and how to implement them using Verilog.
After this lecture you should be able to: design a state machine based on an informal description of its operation, document
it using state transition diagrams and tables, write a synthesizable Verilog description of it and convert between these three
descriptions.

Introduction

Registers

We can connectN flip-flops to the same clock to form
anN-bit register. The common clock loads every flip-
flop at the same time:

D Q

D Q

D Q

clock

D0

D1

DN-1

Q0

Q1

QN-1

D Q

clock

D Q
N N

The Verilog always_ff statement creates a regis-
ter.

State

The state of a register is its value. A state machine is
a description of how the state changes at each rising
clock edge.
The schematic of a state machine is a register

whose next value is selected by a combination of the
current state and, optionally, input signals:

inputs

D Q outputs

clock

Mealy state machine only

 next−state
combinational
 logic

state

 output
combinational
 logic

State transitions, which are changes in the register
value, only happen at the rising edge of the clock. The

state register is always loaded on each rising edge of
the clock, but there is no change of state if it’s loaded
with its current value.
The output of a state machine can be its state or a

logic function such as lookup table can generate the
desired output for each state.
The above describes a Moore state machine. A

Mealy state machine is one where the output is a
function of the current state and the inputs.

State Machine Descriptions

For example, consider a state machine with two bits
of state that sequences through the values 00, 01, 10,
11 and back to 00. The output should be 0 in states
00 and 01 and 1 in states 10 and 11.
The following truth tables define this state ma-

chine’s next-state and output combinational logic
blocks:

state next
state

00 01
01 10
10 11
11 00

state output
00 0
01 0
10 1
11 1

State Transition Table

A state transition table is a truth-table description of
the next-state logic. It has columns for the current
state, the input value(s), and the corresponding next
state. Some useful conventions are: (1) x can be used
for “don’t care”; (2) the firstmatching state/input row
is chosen; (3) if there is no match then there is no
change of state; (4) expressions can be used to define
the next state as a function of the current state and
the input.
For example, if we added a reset input that set the

state to 00 when it was asserted (1), we could write

lec2.tex 1 2023-01-17 09:51

the state transition table for the counter as:

state reset next
state

xx 1 00
11 0 00
𝑛 0 𝑛 + 1

State Transition Diagram

A state machine can also be described by a state tran-
sition diagram drawn using the following conven-
tions: (1) each state is represented by a circle labelled
with the state value (or name); (2) each state shows
the output for that state (unless the state is the out-
put); (3) arrows show possible transitions between
states; (4) transitions happen when the expression
is non-zero (true); (5) unlabelled transitions happen
unconditionally; (6) transitions with no origin come
from all states; (7) conditions that don’t cause a state
change are not shown1; (8) only one transition out of
a state may be true (the conditions must be mutually
exclusive).
The following is a state transition diagram for the

state machine above:

reset

00 01 10 11

0 0 1 1

Exercise 1: Modify the diagram so the state machine counts to 11
and stops. Add a down input that cause the values to count down.

State Machines in Verilog

A state machine can be written in Verilog using one
conditional operator for each transition in the dia-
gramor table. The condition is true if the state and in-
put value(s) match the values for that transition. The
true value is the next state for that transition. The
false value is the next conditional operator or, if no
transition matches, the current state.
The Verilog for the example above would be:

// 2−bit clock divider with reset

module ex67
(output logic [1:0] count,
output logic out,

1Some authors do not allow this.

input logic reset, clk) ;

always_ff @(posedge clk) count
<= reset ? 2'b00 :

count == 2'b11 ? 2'b00 :
count + 1'b1 ;

assign out = count == 2'b10 || count == 2'b11 ;

endmodule

0 3 ps 6 ps 9 ps 12 ps

xx 00 01 10 11 00 01 10

clk=0
count[1:0]=01
out=0
reset=0

Counters

A counter is a common state machine. Typical in-
puts include those to restart the sequence (typically
called reset), to pause or continue the sequence (hold
or enable), or change the order of the values gener-
ated (e.g. up/down).
Exercise 2: Show the state transition diagram and table for a 2‑
bit counter with reset, enable, and down inputs. Reset should have
priority. Write the Verilog.

Timers and Clock Dividers

It takes𝑁 clock periods for a counter to count down2
from𝑁−1 to 0. If the clock period is 𝑇 then the time
taken is 𝑁𝑇. A circuit can thus create a delay of 𝑁𝑇
seconds by counting 𝑁 clock cycles.
Exercise3:Whatvalueof𝑁would result ina20msdelay if theclock
frequency is 50MHz? Howmanybits are needed for this timer’s reg‑
ister?
If the counter is reset to 𝑁 − 1 when it reaches

0 then the count values will be periodic with a pe-
riod 𝑁𝑇. If some event happens each time the count
reaches a specific value (e.g. 0) then this event hap-
pens with period 𝑁𝑇 (a frequency 1/𝑁𝑇).
Exercise 4: Assume the timer above is reset to𝑁 − 1 each time
it reaches 0. For how long is the register value 0? What are the pe‑
riod and frequency of a signal that is inverted each time the count
reaches 0?

Interacting State Machines

Circuits often contain multiple state machines. The
output of one state machine can be an input to an-
other.

2Timers traditionally count down from𝑁−1 to 0 rather than
up from 0 to 𝑁 − 1 because it’s simple to determine when the
count reaches 0: adding−1 does not cause a carry.

2

0 10 sec 20 sec 30 sec 40 sec 50 sec 60 sec 70 sec 80 sec

+ 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 4 3 2 1 0 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 4 3 2 1 0 29 28 27 26 25 24 23 22 21 20 +

+ 100001 100010 001100 010100 100001

clk=0

count[4:0]=XXX

lights[5:0]=xxxxxx

reset=1

Figure 1: Simulation of traffic light controller.

An example is the traffic light controller exam-
ple below. One register represents which lights are
turned on. Another register is the number of seconds
remaining before the lights change.

Traffic Light Controller

This is a controller for a traffic light at an intersection:

R

Y

G

R

Y GR

It combines two state machines: one to sequence the
traffic lights (using a register named lights) and
one as a timer (using a register named count). The
lights states are encoded as 6-bit values with the
on/off values of the (Red, Green, Yellow) lights in
each direction:

R

Y

G

R

Y GR

R

Y

G

R

GR GY

state RG state RY

G

Y

R

G

GY GR

state GR

R

R

G

Y

GY GR

state YR

6’b100_001 6’b100_010 6’b001_100 6’b010_100

Delays are implemented by decrementing count on
each edge of a 1 Hz clock. When count reaches zero
the lights register is loadedwith the next lights state
and the counter register is loaded with the duration
of this next state.
The state transition diagram for the light state ma-
chine is:

rg

gr

ryyr

count==0

count==0count==0

count==0

reset

and the state transition table for the timer is:
Exercise 5: Write the state transition table for the statemachine for
the lights output.

count reset lights next
count

x 1 x 0
𝑛 ≠ 0 0 x 𝑛 − 1
0 0 rg, gr 4
0 0 ry, yr 29

A Verilog module implementing these two state
machines is:
// traffic light controller

module ex54
(output logic [5:0] lights,
input logic reset, clk) ;

typedef enum logic [5:0] // RYG RYG
{ rg=6'b100_001, ry=6'b100_010,
gr=6'b001_100, yr=6'b010_100 }

lightstate ;

logic [4:0] count ;

// next traffic light lights
always @(posedge clk) lights

<= reset ? rg :
count ? lights :
lights == rg ? ry :
lights == ry ? gr :
lights == gr ? yr : rg ;

// state durations
always @(posedge clk) count

<= reset ? 29 :
count ? count-1 :
lights == rg || lights == gr ? 4 : 29 ;

endmodule

3

An enumerated type, lightstate, allows us to
use more meaningful symbolic names (rg, ry, gr,
and gy) for the four possible values of the state reg-
ister.
The simulation results are shown in Figure 1.

Detecting Sequences

State machines are often used to detect sequences of
values in an input.

Shift Registers

A shift register is an𝑁-bit register whose input is the
concatenation of an input bit and the shifted output:

D Q

clock

q{in,q>>1}
N

in

N

Exercise 6: The example above is an N‑bit shift register that shifts
the bits right. Draw a block diagram andwrite the Verilog for a 6‑bit
shift register that shifts left.

in 1 0 1 1 0 0

 Q 0

D

clock

time

Exercise 7: Fill in the diagram above for a 4‑bit (𝑁 = 4) right‑shift
shift register. Assume the initial value is zero. Which bit is the oldest
(first) value in the D waveform? Which bit of the shift register holds
the oldest value?
A shift register makes previous inputs available in

parallel. This is useful for detecting sequences in an
input.
Exercise 8: Draw a block diagram and write the Verilog for a cir‑
cuit that sets an output named detect high when the sequence of
values 1, 1, 0, 1 has appeared on an input named in on successive
rising edges of the clock.

Detecting Changes

An edge detector is the simplest sequence detector. It
detects the change of an input between clock edges.
The state is the input at the two most recent clock

edges. It can be implementedwith a two-bit shift reg-
ister shifting bits in from the left. For example, 10
means the twomost recent inputs were 1 followed by
0. The rising output is truewhen the input changed
from low to high. The falling output is true for the
opposite change.

00

01

11

10

1 0

1

0

1

in=0

Exercise 9: Forwhich stateswould falling be asserted? rising?
Draw the schematic andwrite the Verilog for this statemachine. As‑
sume an input in and a 2‑bit register bits that holds the twomost
recent input values.

Detecting Durations

Mechanical switches “bounce” when they switch:

A switch debouncer eliminates these undesired tran-
sitions.
The debouncer shown below uses two state ma-

chines: a timer to delay changing the output until the
input has been stable for𝑁 clock cycles and a one-bit
state machine to hold the current output value until
the timer expires. The timer, described with a state
transition table, uses a register named count. The
debouncer, described with a block diagram, uses a
register named out and an input named in.

count in == out next
count

x 1 𝑁 − 1
0 x 𝑁 − 1
𝑛 0 𝑛 − 1

4

D Q out
0

1

clock

in

count != 0

Exercise 10: Write always_ff statements that implement these
state machines.

Detecting Sequences of Values

A sequence detector can detect longer sequences. In
the following example, a 4-digit combination lock,
the state is the most recent four input digits. Com-
binational logic asserts an unlock output when the
most recent four inputs match the passcode (1,2,3,4
in this example).
// digit−sequence detector

module ex24 (output logic unlock,
input logic [3:0] digit,
input logic clk) ;

logic [0:3][3:0] digits ;

// next−state logic

always_ff @(posedge clk) digits
<= { digits[1:3], digit } ;

// sequence detector output

assign unlock
= digits == { 4'd1, 4'd2, 4'd3, 4'd4 } ?
'1 : '0 ;

endmodule

0 1 us 2 us 3 us 4 us 5 us 6 us 7 us

x 5 1 2 3 4 2
xxxx xxx5 xx51 x512 5123 1234 2342

clk
digit[3:0]
digits[15:0]
unlock

Exercise 11: Howcould youmodify the code so thatdigits is only
updated when an enable input is asserted?
Exercise 12: Howmany states can this state machine have?
A simpler implementation would count the num-

ber of digits that had been entered in the correct or-
der.
Exercise 13: Draw the state transition diagram for this simpler im‑
plementation. How many states are there? Write the Verilog using
a 3‑bit count state variable.

One‑Hot State Encodings

“One-hot” state encodings use one flip-flop per state
and only one flip-flop at a time may be set to 1. This

requires more flip-flops but may require less combi-
national logic. For the first state machine example (a
2-bit counter) the two states could be encoded in two
different ways:

binary
encoding

one‑hot
encoding

00 1000
01 0100
10 0010
11 0001

Exercise 14: How much logic is required to detect a state when a
binary encoding is used? With a one‑hot encoding?
Exercise15: Ifweused8‑bits of state information, howmany states
could be represented? What if we used 8 bits of state but used a
“one‑hot” encoding?

5

	Introduction
	Registers
	State

	State Machine Descriptions
	State Transition Table
	State Transition Diagram
	State Machines in Verilog

	Counters
	Timers and Clock Dividers

	Interacting State Machines
	Traffic Light Controller

	Detecting Sequences
	Shift Registers
	Detecting Changes
	Detecting Durations
	Detecting Sequences of Values

	One-Hot State Encodings

