State Machines

Exercise 1: Modify the diagram so the state machine counts to 11 and stops. Add a down input that cause the values to count down.

Exercise 2: Show the state transition diagram and table for a 2bit counter with reset, enable, and down inputs. Reset should have priority. Write the Verilog.

Exercise 3: What value of N would result in a 20 ms delay if the clock frequency is 50 MHz ? How many bits are needed for this timer's register?

Exercise 4: Assume the timer above is reset to $N-1$ each time it reaches 0 . For how long is the register value 0 ? What are the period and frequency of a signal that is inverted each time the count reaches 0 ?

Exercise 5: Write the state transition table for the state machine for the lights output.

Exercise 6: The example above is an N -bit shift register that shifts the bits right. Draw a block diagram and write the Verilog for a 6-bit shift register that shifts left.

Exercise 7:

Fill in the diagram above for a 4-bit $(N=4)$ right-shift shift register. Assume the initial value is zero. Which bit is the oldest (first) value in the D waveform? Which bit of the shift register holds the oldest value?

Exercise 8: Draw a block diagram and write the Verilog for a circuit that sets an output named detect high when the sequence of values 1, 1, 0, 1 has appeared on an input named in on successive rising edges of the clock.

Exercise 9: For which states would falling be asserted? rising? Draw the schematic and write the Verilog for this state machine. Assume an input in and a 2-bit register bits that holds the two most recent input values.

Exercise 10: Write always_ff statements that implement these state machines.

Exercise 11: How could you modify the code so that digits is only updated when an enable input is asserted?

Exercise 12: How many states can this state machine have?

Exercise 13: Draw the state transition diagram for this simpler implementation. How many states are there? Write the Verilog using a 3-bit count state variable.

Exercise 14: How much logic is required to detect a state when a binary encoding is used? With a one-hot encoding?

Exercise 15: If we used 8-bits of state information, how many states could be represented? What if we used 8 bits of state but used a "one-hot" encoding?

