Exercise 11: How could you modify the code so that **digits** is only updated when an **enable** input is asserted?

Exercise 12: How many states can this state machine have?

There are 10 possible values for each digit
so there are
$$(0 \times 10 \times 10 \times 10 = 10^4 = 16,000)$$

possible states.

Exercise 13: Draw the state transition diagram for this simpler implementation. How many states are there? Write the Verilog using a 3-bit **count** state variable.

logic [2:0] count;

$$2lways-ff @ (posedge clk)$$

 $count \ll count == 0 & & dusit == 1?1:$
 $count == 1 & & dusit == 2?2:$
 $count == 2 & & dusit == 3?3:$
 $count == 3 & & dusit == 4?4:0;$
 $assign unlock = count == 4;$

Exercise 14: How much logic is required to detect a state when a binary encoding is used? With a one-hot encoding?

Exercise 15: If we used 8 bits of state information, how many states could be represented? What if we used 8 bits of state but used a "one-hot" encoding?

