Exercise 11: How could you modify the code so that digits is only updated when an enable input is asserted?

$$
\begin{aligned}
& \begin{array}{l}
\text { always_ff @(posedge clii) digits } \\
<=\{\text { digits } 11: 3], \text { digit }\} ;-
\end{array} \\
& \text { always_ff@(posedge alk) digits } \\
& <=\text { enable? }\{\operatorname{digits[1:3],~digit~}\} \text { digits, }
\end{aligned}
$$

Exercise 12: How many states can this state machine have?
There are 10 possible values for each digit

So there ore $10 \times 10 \times 10 \times 10=10^{4}=10,000$ possible states.

Exercise 13: Draw the state transition diagram for this simpler implementation. How many states are there? Write the Verilog using a 3-bit count state variable.


$$
\operatorname{logic}[2: 0] \text { count; }
$$

always_ff $Q$ (posedge ck)
count $\Leftarrow$ count $==0$ \&\& digit $=1$ ? 1:

$$
\begin{aligned}
& \text { count }==1 \& \& \text { digit }=2 ? 2: \\
& \text { count }==2 \& \& \text { digit }=3 ? 3: \\
& \text { count }==3 \& \& \text { digit }==4 ? 4: 0 ;
\end{aligned}
$$

$$
\operatorname{assign}
$$

$$
\text { unlock }=\text { count }==4 \text { i }
$$

Exercise 14: How much logic is required to detect a state when a binary encoding is used? With a one-hot encoding?


1
0
a
no $\log _{i} c$

need

for $2^{n}$ states
0
needed.

binary encoding

Exercise 15: If we used \& bits of state information, how many states could be represented? What if we used 8 bits of state but used a "one-hot" encoding?

$$
\left.\begin{array}{l}
\text { binary: } 2^{8}=256\left\{\begin{array}{rrrrr}
00000 & 000 & 0 \\
000 & 0 & 0 & 0 & 0 \\
\vdots & \vdots \\
1 & 1 & 1 & 1 & 1
\end{array} 1_{1} 11\right.
\end{array}\right\} 256
$$

