
State Machines

Exercise 1: Modify the diagram so the state machine counts to 11 and stops. Add a down input that cause the values to count down.

Exercise 2: Show the state transition diagram and table for a 2-bit counter with reset, enable, and down inputs. Reset should have priority. Write the Verilog.

$$\begin{array}{c|c} count & reset enable down & count \\ \hline \chi \chi & 1 & \chi & 0 & 0 \\ \hline n & 0 & 0 & \chi & h \\ \hline 1 & 0 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 1 & 1 & 11 \\ \hline n & 0 & 1 & 0 & -1 \\ \hline n & 0 & 1 & 1 & h-1 \end{array}$$

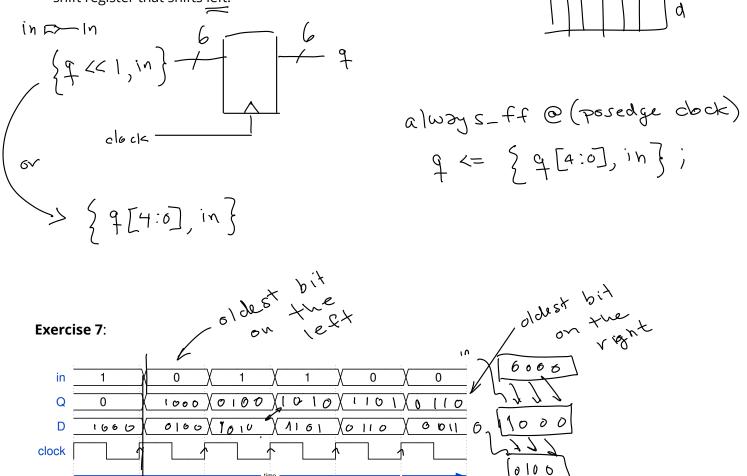
Exercise 2: Show the state transition diagram and table for a 2-bit counter with reset, enable, and down inputs. Reset should have priority. Write the Verilog.

Count	reset	ensble	down	count &
$\chi \times$ h 1 0 n	1 0 0 0 0	X O 1 1	× × Ø - O	0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
\sim	0		l	v (-

Exercise 3: What value of *N* would result in a 20 ms delay if the clock frequency is 50 MHz? How many bits are needed for this timer's register?

elock frequency =
$$f = \frac{50 \times 10^6}{12}$$

clock period = $T = \frac{20 \times 10^{-3}}{120}$
delay = $t = NT = \frac{20 \times 10^{-3}}{120}$
clock cycles = $N = \frac{t}{T} = \frac{20 \times 10^{-3}}{20 \times 10^{-3}} = 10^6$

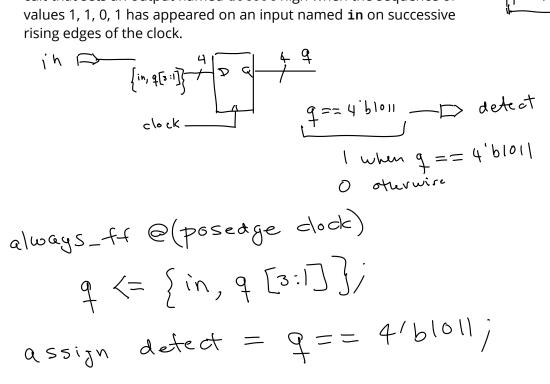

Exercise 4: Assume the timer above is reset to N - 1 each time it reaches 0. For how long is the register value 0? What are the period and frequency of a signal that is inverted each time the count reaches 0?

T

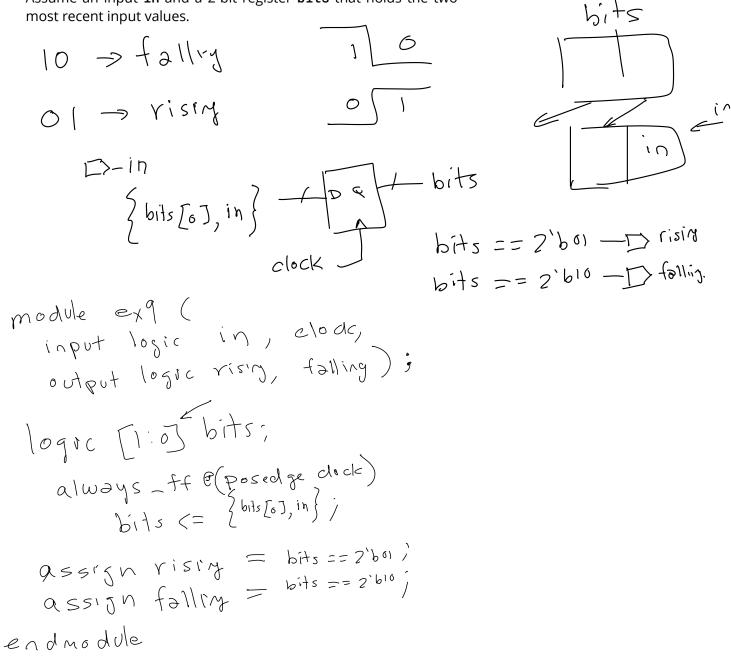
Exercise 5: Write the state transition table for the state machine for the **lights** output.

for the lights output.				hext
	lights	reset	court	next (ignts
count==0 count==0	×	l	\times	rg
	rg	O	Q	vy
	YЧ	0	0	gr
count==0	gr	0	ð	yr
	yr	6	0	r g
	n N	P	70	\sim

Exercise 6: The example above is an N-bit shift register that shifts the bits right. Draw a block diagram and write the Verilog for a 6-bit shift register that shifts left.


i٥

Fill in the diagram above for a 4-bit (N = 4) right-shift shift register. Assume the initial value is zero. Which bit is the oldest (first) value in the waveform? Which bit of the shift register holds the oldest value?


$$\{in, Q[3:1]\}$$
 D c

Exercise 8: Draw a block diagram and write the Verilog for a circuit that sets an output named **detect** high when the sequence of values 1, 1, 0, 1 has appeared on an input named in on successive rising edges of the clock.

-> 1011

Exercise 9: For which states would **falling** be asserted? **rising**? Draw the schematic and write the Verilog for this state machine. Assume an input **in** and a 2-bit register **bits** that holds the two most recent input values.

Exercise 10: Write **always_ff** statements that implement these state machines.

count	in out	next	
	in == out	count	
x	1	N-1	
0	х	N-1	
n	0	n-1	

0

in ⊃—

count != 0 ►

clock ⊳