Introduction to Digital Design with Verilog HDL

Exercise 1: What changes would result in a 3-input OR gate?

Exercise 2: What schematic would you expect if the statement was assign y = (a ^ b) | c ;?

Exercise 3: What are the lengths and values, in decimal, of the following:

4'b1001?

5'd3?

6'h0_a?

3?

Exercise 4: If the signal i is declared as logic [2:0] i;, what is the 'width' of i?

If i has the value 6 (decimal), what is the value of i[2]?

Ofi[0]?

Exercise 5: Use slicing and concatenation to compute the byteswapped value of an array **n** declared as **logic** [15:0] **n**.

Exercise 6: If n has the value 16'h1234, what is the value and length of:

{n[7:0],n[15:8],4'b1111}?

Exercise 7: Use concatenation to shift \mathbf{n} left by two bits.

Exercise 8: Use concatenation to assign the high-order byte of **n** to **a** and the low-order byte to **b**.

Exercise 9: An array declared as **logic** [15:0] n; and has the value 16'h1234. What are the values and lengths of the following expressions?

n[15:13]

!n

~n[3:0]

n>>4

n + 1'b1

n[7:0] - n[3:0]

Exercise 10: What are the length and value of the expression: 3 ?

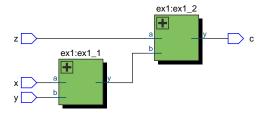
16'd10 : 8'h20?

If \mathbf{x} has the value 0, what is the value of the expression: \mathbf{x} ?

1'b1 : 1'b0?

If **x** has the value -1?

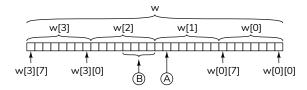
```
Exercise 11: Draw the schematics corresponding to:
```


Exercise 12:

```
assign y = a + 1;
```

Some software warns about truncation. How could you re-write the **assign** statement to avoid such a warning?

Exercise 13: Write an always_ff statement that toggles (inverts) its output on each rising edge of the clock.


Exercise 14:

Identify the following in the diagram above: component names, component "instance names," component port names, module port names. Label the signal ${\bf t}$ in the schematic.

Exercise 15: Rewrite the **ex60** module using operators. Which version – "structural" or "behavioural" – is easier to understand?

Exercise 16:

How would you specify the bit marked A in the diagram above?

The bits marked B?

The least-significant byte?

Exercise 17: Define a Verilog lookup table named **isprime** that can be used to determine if a value between 0 and 7 is a prime number or not. The result should be 1 if the value is a prime or else 2. *Hint: The primes are 2, 3, 5 and 7.*

Exercise 18: Write an expression giving the same result. Draw the corresponding block diagram.