Quiz 1

13:30-14:00
Friday, January 21, 2022 SW01-1021

This exam paper is for:

Paper, Test 1 A00123456

Each exam is equally difficult.
Answer your own exam.
Do not start until you are told to do so.

Name: \qquad

BCIT ID: \qquad

Question	Mark	Max.
Total		0

Signature: \qquad

1. Write a Verilog module named check with two 7 -bit inputs named s1 and s2 and a 1-bit output named either. either should be set to 1 if either s1 or s2 are non-zero. either should be set to zero otherwise. Declare arrays with decreasing bit order.
2. Given the following Verilog declarations:

$$
\begin{aligned}
& \text { logic }[11: 0] \mathrm{x}=12 \text { 'd32; } \\
& \text { logic }[7: 0] \text { y }=8 ' b 101 ;
\end{aligned}
$$

fill in in the table below with the value of the each expression as a hexadecimal (base 16) number (Verilog format not necessary) and the length (number of bits) as a decimal (base 10) number:

expression	value (in hexadecimal)	length (in bits, decimal)
$\{y, y\}$		
$x[7: 4]$		
$x \& \& y$		
$x+y$		

3. Write a Verilog statement that would implement the schematic on the right. You can assume it would replace the "missing statement" comment in the quiz1 module.

module quiz1
(input logic [5:0] x, y,
input $\operatorname{logic~a,~}$ output logic [5:0] r) ;
// missing statement
endmodule

Quiz 1

13:30-14:00
Friday, January 21, 2022
SW01-1021

This exam paper is for:
Paper, Test 2 A00123456

Each exam is equally difficult.
Answer your own exam.
Do not start until you are told to do so.

Name: \qquad

BCIT ID: \qquad

Question	Mark	Max.
Total		0

Signature: \qquad

1. Write a Verilog module named check with two 15 -bit inputs named $\mathbf{s} 1$ and $\mathbf{s} 2$ and a 1 -bit output named both. both should be set to 1 if both $s 1$ and s2 are non-zero. both should be set to zero otherwise. Declare arrays with decreasing bit order.
2. Given the following Verilog declarations:

$$
\begin{aligned}
& \text { logic }[11: 0] \text { x }=12 ' d 64 ; \\
& \text { logic }[7: 0] \text { y }=8 ' b 111 ;
\end{aligned}
$$

fill in in the table below with the value of the each expression as a hexadecimal (base 16) number (Verilog format not necessary) and the length (number of bits) as a decimal (base 10) number:

expression	value (in hexadecimal)	length (in bits, decimal)
$\{y, y\}$		
$x[7: 4]$		
$x \& \& y$		
$x+y$		

3. Write a Verilog statement that would implement the schematic on the right. You can assume it would replace the "missing statement" comment in the quiz1 module.

