0

MIDTERM EXAM 1 15:30 – 17:30 Friday, March 4, 2021 SW01-1205

This exam has three (3) questions on two (2) pages. The marks for each question are as indicated. There are a total of twenty-one (21) marks. Answer all questions. Write your answers and all rough work in this paper and nowhere else. Show your work. Draw a box around your final answer. Numerical answers must include units. Books and notes are allowed. No electronic devices other than calculators are allowed. **Show your work**.

This exam paper is for:

Sample Exam 1 A0000000

Each exam is equally difficult.

Answer your own exam.

Do not start until you are told to do so.

Name:	 Question	Mark	Max.
	1		5
BCIT ID:	 2		8
	3		8
	Total		21
Signature:			

A state machine has a one-bit **reset** input and a 3-bit **value** output. If **reset** is asserted the output is set to **3'd1**. When **reset** is not asserted the output takes on successive values of **3'd4**, **3'd5**, and **3'd7**. Then the output stays at **3'd7** until **reset** is asserted again. All changes on the output happen on the rising edge of the clock.

Write the state transition *table* for this state machine. Write the state and input values as Verilog literals in any base. You may also use X to indicate a "don't care" state or input value.

Question 2

8 marks

Draw the state transition diagram corresponding to the state transition table below. Label each state using the values shown below. **in** is an input declared **input logic in**; Label each transition with a Verilog expression that would have the value 1. for that transition. You need not include transitions that would not change the state.

ext
ate
010
001
L00
000
L00
001
000

Question 3

8 marks

Write a Verilog module named **detector** that implements the state state transition diagram shown below. It has a one-bit output **out**, a one-bit input **in**, and a clock input **clk**. **out** should be set to 1 only in state **D**. The output may change only on the rising edge of **clk**.

Follow the mandatory course coding conventions. Declare any signals (variables) required by your solution. You may use any state encoding. You may use any number of **assign** and **always_ff** statements. You may assume the initial state will be (A). *Hint: come up with a unique encoding for each of the four states.*

MIDTERM EXAM 1 15:30 – 17:30 Friday, March 4, 2021 SW01-1205

This exam has three (3) questions on two (2) pages. The marks for each question are as indicated. There are a total of twenty-one (21) marks. Answer all questions. Write your answers and all rough work in this paper and nowhere else. Show your work. Draw a box around your final answer. Numerical answers must include units. Books and notes are allowed. No electronic devices other than calculators are allowed. **Show your work.**

This exam paper is for:

Sample Exam 2 A0000000

Each exam is equally difficult.

Answer your own exam.

Do not start until you are told to do so.

Name:	 Question	Mark	Max.
	1		5
BCIT ID:	 2		8
	3		8
	Total		21
Signature:	 		

A state machine has a one-bit **reset** input and a 3-bit **value** output. If **reset** is asserted the output is set to **3'd1**. When **reset** is not asserted the output takes on successive values of **3'd2**, **3'd3**, and **3'd7**. Then the output stays at **3'd7** until **reset** is asserted again. All changes on the output happen on the rising edge of the clock.

Write the state transition *table* for this state machine. Write the state and input values as Verilog literals in any base. You may also use X to indicate a "don't care" state or input value.

Question 2

8 marks

Draw the state transition diagram corresponding to the state transition table below. Label each state using the values shown below. **in** is an input declared **input logic in**; Label each transition with a Verilog expression that would have the value 1. for that transition. You need not include transitions that would not change the state.

current	input	next
state	in	state
0001	1	0010
0001	0	0001
0010	1	0100
0010	0	0010
0100	x	1000
1000	1	0001
1000	0	1000
0010 0100 1000	0 x 1	0010 1000 0001

Question 3

8 marks

Write a Verilog module named **detector** that implements the state state transition diagram shown below. It has a one-bit output **out**, a one-bit input **in**, and a clock input **clk**. **out** should be set to 1 only in state **D**. The output may change only on the rising edge of **clk**.

Follow the mandatory course coding conventions. Declare any signals (variables) required by your solution. You may use any state encoding. You may use any number of **assign** and **always_ff** statements. You may assume the initial state will be (A). *Hint: come up with a unique encoding for each of the four states.*