
ELEX 2117 : Digital Techniques 2
2022 Winter Term

Verification

This lecture describes how digital systems are tested.
After this lecture you should be able to select an appropriate verification strategy including: selecting simulation or hard-
ware testing; stimulus-only or self-checking testbenches; selection of test inputs; use of “known-good” models; unit testing;
regression testing; distinguish between functional (RTL) and gate-level (timing) simulations; use delays and event controls
to generate waveforms in a System Verilog testbench.

Design Verification

Verification is checking that a design meets require-
ments. Verification typically requires more time and
effort than the initial design and is typically done by
simulation.

Functional (RTL)versusTiming (Gate‑Level) Sim‑
ulation

The following diagram shows the steps involved in
the design and verification of a digital logic circuit.

HDL

netlist

P
&

R

functional
simulation

timing
simulation

programming
file (FPGA)or
GDSII (geometry
for ASIC)

back-
annotation

delays

6

4

4
2

3

s
y
n

th
e

s
is

The logic synthesizer generates a netlist that de-
scribes how the components (gates, flip-flops, etc) are
connected. The place and route (P&R) step places
the components at specific locations on the IC and
connects them using the metal layers of an ASIC or
a PLD’s routing resources. The P&R step determines
the delays between components.
Simulations can verify both the correct function-

ing of the design (“functional verification”) and that
it will operate at the required clock frequency (“tim-
ing simulation”).
Functional testing verifies the design by assum-

ing zero propagation delay through combinational
logic and interconnects. This checks that the logical
(“functional”) design is correct. This can be done be-
fore mapping the design to gates and placing these at

specific locations of the IC because propagation de-
lays do not affect the results.
Timing simulation verifies that the design will

behave correctly with the actual signal delays that
will appear in the final design. This requires that
the delays estimated from P&R are added (“back-
annotated”) to the netlist.

Types of Testbenches

A simulation consists of the device (or design or unit)
under test (DUT/UUT), plus additional code called a
testbench that applies inputs to the DUT and checks
its output:

testbench

DUT

stimulus
 inputs

response
 outputs

test vectors

Stimulus‑Only

The simplest testbench applies inputs to theDUT and
saves the inputs and outputs to a file so a designer can
view them. These testbenches are useful during the
initial design process.

Self‑Checking

Once initial testing is complete, it’s desirable to en-
sure that subsequent changes to the design do not
introduce errors (“regressions”). Manually checking
the outputs after each change is tedious and error-
prone. Once the expected outputs have been estab-
lished, a “self-checking” testbench can check the out-
puts itself and flag any differences.
A self-checking testbench sets the inputs andwaits

for a fixed delay or for an event indicating the DUT

lec8.tex 1 2022-03-23 20:21

output is valid. The code then compares theDUTout-
put to the desired result.

Generating Test Vectors

Test vectors are the values to be applied to the DUT
and the corresponding expected outputs.
Test vectors can be generated by the testbench it-

self (e.g. in a loop or using a random number genera-
tor) or they can be read from a file generated by other
software.

Ɪnputs

Usually there are too many possible combinations of
inputs to be able to test them all. However, enough
test vectors should be generated to ensure a reason-
able confidence in the correct operation of the design.
Test vectors should include:

1. typical input values,
2. minimum/maximum valid input values,
3. invalid inputs and
4. randomly-chosen values.

Exercise 1: Give examples of appropriate test inputs for each of the
above categories if you were testing: (a) an 4x8‑bit multiplier with
a 10‑bit output, (b) a frequency divider using an 8‑bit timer?

Outputs

For very simple designs it may be possible to compute
the correct outputs manually. But for more complex
designs thiswould take too long or be too error-prone.
In this case the correct outputs have to be generated
by software.
This requires that there be a “known-good” soft-

ware model of the desired behaviour that has been
independently verified. How this is done depends on
the application.

Test Strategies

Unit Testing

It’s often more effective to test components of a de-
sign individually rather than the complete design.
This “unit testing” makes it easier to isolate the
source of a problem.

It’s often useful to start testing before a design is
complete. As each part of a design is completed, test-
benches, tests vectors and scripts are prepared and
added to the test suite for regression testing.

Test Automation

Running these tests manually would take too long
and be too error-prone. Scripts are used to automate
testing by compiling the code, running simulations
and summarizing the results.
Many EDA (Electronic Design Automation) tools,

including the FPGAdesign and test software from In-
tel and Xilinx can be controlled by scripts written in a
simple scripting language called tcl (Tool Command
Language, pronounced “tickle”). For example, the
various programs in the Quartus tool suite have em-
bedded tcl interpreters andmany of the configuration
files are actually tcl scripts that set variables.
tcl is a very simple scripting language. Strings are

the only data type. The first word of each line is the
command to be execute. Commands within brack-
ets ([]) are executed and the resulting string is substi-
tuted in place of that command.
Exercise 2: What two tcl commands are executed by the following
tcl script: set x [expr 1 + 1]?

Verilog for Verification

Early integrated circuits were designed and laid out
by hand. As complexity increased it became neces-
sary to simulate these circuits before they were man-
ufactured to be reasonably sure that they would work
properly. The Verilog language (from “verification”
and “logic”) was designed to simplify the simulation
of these digital circuits.
It later turned out that [a subset of] a language de-

signed to model hardware for simulation purposes
was also well-suited as the input language to a logic
synthesizer.
In this section we will cover a few additional fea-

tures of Verilog that are useful for simulation.

Parallel Statements

A module can contain any number of initial and
always blocks that execute concurrently:

initial blocks execute once at the start of the sim-
ulation. Most Verilog testbenches run through

2

https://en.wikipedia.org/wiki/Tcl

their test vectors sequentially using one or more
initial block(s).

always blocks execute continuously.

Multiple statements may appear in each block be-
tween begin and end.

Delays

Simulations need to model propagation delays and
clock periods.
When a delay is specified, the default time unit is

picoseconds. However, this can be changed with the
`timescaledirectivewhich defines the default units
and the resolution. For example:
`timescale 1us/1ns

means delays are given inmicroseconds and delays of
less than 1 ns cannot be resolved. The suffixes ps, ns,
us can be used for pico-, nano- and micro-seconds.
Note that these delays are not synthesizable be-

causemodern logic design does not use delay circuits.

Delays and Event Control

The execution of the next statement is often delayed,
in simulation time, by one of the following:

#number delays execution by number simulation
time. (#0) delays until after un-delayed events
at the same time. A (#1step) delay pauses ex-
ecution by the smallest possible amount – the
time resolution.

@(event) where event can be posedge or negedge
before a signal name or just a signal name de-
lays execution until that signal edge or a change
in the signal value. Multiple events can be
given separated by or (e.g. @(posedge clk or
reset)).
We have used event controls to control ex-
ecution of always_ff procedural blocks but
they can also be used in simulations to syn-
chronize execution of procedural blocks (e.g.
@(count == 0)).

wait(expression) delays execution until the expres-
sion is non-zero.

Exercise 3: What’s the difference between wait(x) y='1; and
@(x) y='1;?

Sequential Statements

These statements appear within always or initial
procedural blocks and execute sequentially (one after
the other). They useful when writing testbenches for
simulation (they can also be used for synthesis – but
not in this course).
for, while and do loops are the same as in C. The

break and continue statements from C can also be
used.
The if/else statement syntax is the same as in to

C.
The begin and end keywords group statements

that should be executed together. They serve the
same purpose as braces ({, }) in C (which are used
for concatenation and replication in Verilog).

System Tasks

Functions with names beginning with $ are sys-
tem tasks. Some examples: $display() and
$warning(), similar to C’s printf(), can be
used to print messages during simulation; $finish
and $stop terminate or suspend a simulation.
$dumpfile and$dumpvars record changes in signals
to a “value change dump” (.vcd) file for subsequent
viewing with a waveform viewer.

Example

The following demonstrates how the Verilog features
described above can be used in writing a testbench.
The testbench is often in a separate file. In this
case the testbench is hidden from synthesizers by
synthesis translate_on/off pragmas.
`timescale 1us/1ns

// the DUT (device under test): a slightly buggy
// synchronous adder (for which 1+1!=2)

module sadder
(input logic [3:0] a, b,
output logic [3:0] c,
input logic reset, clk) ;

always_ff @(posedge clk)
c <= reset || a==4'd1 && b==4'd1 ? '0 : a + b ;

endmodule

// synthesis translate_off

// // the testbench

module ex59 ;

3

https://en.wikipedia.org/wiki/Value_change_dump
https://en.wikipedia.org/wiki/Directive_(programming)

0 100 us 200 us

0

0 1 2 3 4 5 6 7 8 9

x 0 1 2 3 4 5 6 7 8

a[3:0]

b[3:0]

c[3:0]

clk

done

reset

Figure 1: Testbench simulation results.

// DUT inputs & outputs
logic [3:0] a, b, c ;
logic reset, clk ;

// set their initial values
initial begin

{a,b,clk} = '0 ;
reset = '1 ;

end

// instantiate the DUT
sadder s0 (.*) ;

// simulation−complete flag
logic done = '0 ;

// continuous 20ns clock
always #10 clk = ∼clk ;

// release reset immediately after first rising
// edge
initial @(posedge clk)
#0 reset = '0 ;

// run through test vectors
initial begin

// create a VCD waveform file
$dumpfile("ex59.vcd") ;
$dumpvars ;

// check all possible inputs
for (integer i=0 ; i <= 15 ; i++) begin

for (integer j=0 ; j <= 15 ; j++) begin

// wait for rising clock edge plus one
// simulation time step
@(posedge clk) #1step ;

// check the output
if (reset && c != '0 || c != a+b)

$warning
("error:a=%b,b=%b,c=%b\n",a,b,c) ;

// set the next inputs
{a,b} = {i[3:0],j[3:0]} ;

end
end

done = '1 ;
end

// end simulation when done
initial
wait (done) $finish ;

endmodule

// synthesis translate_on

Running this testbench prints:

** Warning: error:a=0001,b=0001,c=0000
Time: 370001 ns Scope: ex59 File: ex59.sv Line: 63
** Note: $finish : ex59.sv(77)
Time: 5110001 ns Iteration: 1 Instance: /ex59
End time: 19:56:52 on Mar 23,2022, Elapsed time: 0:00:00
Errors: 0, Warnings: 2

and the initial portion of the waveforms dumped to
the file ex59.vcd are shown in Figure 1.

Simulation vs Hardware Testing

Programmable logic (FPGA and CPLD) designers
have the option of testing a circuit in addition to sim-
ulating their designs.
Simulations have several advantages:

• simulators give more visibility into the opera-
tion of the design than hardware (even when
using embedded logic analyzers such as Signal-
Tap),

• compilation is much faster than synthesis,

• simulations can be automated (e.g. to run
nightly regression tests),

• it’s relatively easy to supply test data (“test vec-
tors”) to an FPGA being simulated and collect
and process the results,

on the other hand:

• a simulation is orders of magnitude slower than
hardware, and so:

• a simulator cannot process input in real time,

• a simulation cannotmodel all details of the final
design (interfaces, power supplies, etc.).

Thus simulations tend to be used early in the design
process followedby testing on thefinal hardware con-
figuration.

4

	Design Verification
	Functional (RTL) versus Timing (Gate-Level) Simulation
	Types of Testbenches
	Stimulus-Only
	Self-Checking

	Generating Test Vectors
	Inputs
	Outputs

	Test Strategies
	Unit Testing
	Test Automation

	Verilog for Verification
	Parallel Statements
	Delays
	Delays and Event Control
	Sequential Statements

	System Tasks
	Example
	Simulation vs Hardware Testing

