Timing Analysis

Exercise 1: Label the specifications A through C as requirements or guaranteed responses.

input1

input2

B

output 2

guaraAced

vegpon or

output 2

output 2

guaraAced

vegpon or

output 2

messored

Exercise 2: Which of the specifications in the formula above decrease the available setup time as they increase? Which increase it?

Exercise 3: For a particular circuit f_{Clock} is 50 MHz, $\hat{\text{LCO}}$. is 2 ns (maximum), the worst-case (maximum) PD. in a circuit is 15 ns and the minimum setup time requirement is 5 ns. What is the setup time slack? Will this circuit operate reliably? If not, what it the maximum clock frequency at which it will?

foliok =
$$50 \text{MHz}$$
 $t_{clock} = \frac{1}{50000} = 20 \text{ ns}$
 $t_{p0} = 15 \text{ ns}$
 $t_{c0} = 5$ $t_{s0}(5001) = T_{clock} - t_{p0} - t_{co}$
 $t_{c0} = 5$ $t_{s0}(5001) - t_{s}(7000) = 3 - 5 = -2 \text{ ns}$

Slock = $t_{s0}(2001) - t_{s}(7000) = 3 - 5 = -2 \text{ ns}$

No, will not work reliably.

Need $t_{s0}(2001) = 5 \text{ ns}$.

 $t_{s0}(2001) = 5 \text{ ns}$.

Take $t_{s0}(2001) = 5 \text{ ns}$.

Exercise 4: What is the maximum clock frequency for a counter using flip-flops with 200 ps setup times, 50 ps had times and adder logic that has a 250 ps propagation delay?

logic that has a 250 ps propagation delay?

$$t_{SU} = \frac{1}{\text{Clock}} - t_{PD} - t_{CO}$$

$$t_{PD} - t_{PD}$$

$$t_{PD} - t_{CO}$$

$$t_{PD} - t_{PD}$$

$$t_{PD}$$

Exercise 5: Which of the above would increase design time? Which would increase the unit costs? Which would lower quality?