Interfaces

Exercise 1: The diagram below shows a transfer over an SPI bus. How many bits of data are transferred and what is the decimal value of this data?

Exercise 2: Based on the diagram above, write a state transition table for an SPI interface controller that transfers four bits at a time. Include an idle state. In which states are SCLK and \overline{SS} asserted?

state transition table

(V)	vvent State	10119 1042	hext State
	idle	 	d31 idle
Q	$\begin{cases} d3h \\ \vdots \end{cases}$	×	d3h d21
	doh	× ×	idle

_outputs

State	SCLK	SS	_\oad	Shiff	
r'dle	L	+(H	1	
d3L	L	L	L	L	
d3h	H		L	7	
o *					
,	from diagrom				
	above				

Exercise 3: Draw the RS-232, Manchester and USB 2 waveforms that would be transmitted for the byte value 8 'h3f.

Exercise 4: The diagram above shows the voltages on a differential pair. The differential voltage is $V_{\rm differential} = D_+ - D_-$. Draw the differential voltage waveform.

