ELEX 2117 : Digital Techniques 2
2022 Winter Term

More Verilog

This lecture describes Verilog modules and parameters, arrays and the relationship between numbers, logic levels and truth

values.
After this lecture you should be able to:

« declare modules with parameters and ports

« instantiate modules using positional, named and wildcard parameters and signals

« declare arrays of arrays and use initialized arrays as lookup tables

« convert between high/low logic levels and true/false truth values for active-high and active-low interfaces

Modules

It’s good practice to divide designs into smaller parts’
because small, simple circuits are easier to design and
test than large ones.

With careful partitioning there can be other advan-
tages. A larger part could use several copies of the
same part. Or a part might be re-used in future de-
signs.

In Verilog each part is amodule. Modules describe
logic that can be “instantiated” (duplicated and in-
serted into) another module:

instantiating module

signal

The module’s interfaces are defined by a header
describing ports and parameters. Ports are in, out
or inout (bidirectional) signals while parameters are
values that can customize each instance of a module.
The module’s body contains additional signal decla-
rations and parallel (concurrently executing) state-
ments between module and endmodule. These de-
fine the structure or behaviour of the module.

'How small? A good rule of thumb is to make sure each part
can be described on a single page.

lec4.tex

Here’s an example of a module named bits that
defines an nb-bit register:

module bits
#(parameter nb=1)
(
input 1logic [nb-1:
output logic [nb-1:
input 1logic clock

] dl
I q,

logic [nb-1:0] q_next ;
assign q_next = d ;
always_ff @(posedge clock) q = q_next ;

endmodule

The parameter nb has a default value of 1 which
is used if a value is not given when the module is in-
stantiated. There are two input ports (named d and
clock) and one output port (named q).

A module instantiation starts with the name of the
module followed by parameter values (if any), an in-
stance name (to identify individual instances of the
same module), and a description of how to connect
signals in the instantiating module to the ports in the
instantiated module. For example:

bits be (a,b,c) ;

Would instantiate a bits module with instance name
be that connected the signals a, b and ¢ to the corre-
sponding ports in the bits module (d, q and clock
respectively).
Exercise 1: Draw a diagram labelling the module, instance, signal
and port names as in the diagram above.

An 8-bit, 3-stage shift register could be built using
three bits modules:

2022-02-12 12:14

clock

clock[

bits:b0

clock
newest[7..0] D—dm—

clock

d[7..0]

g7.0]

oldest[7..0]
d[7..0]

Figure 1: Shift Register Synthesis

sr3bytes

bits bits bits

newest a b
~d qp d qp d q

clock clock clock
clock ’, b0 ’, b1 ’, b2

module sr3bytes
(
input logic [7:0] newest,
output logic [7:0] oldest,
input logic clock

oldest
+]

localparam nbits = ;

logic [nbits-1:0] a, b ;

bits #(nbits) b® (newest,a,clock);
bits #(.nb(nbits)) b1 (.q(b),.clock,.d(a));
bits #(.nb(nbits)) b2 (.d(b),.q(oldest),.%*);

endmodule

Exercise 2: Identify the module instantiation statements in the
code above. For each one, what is the instantiated module’s name?
The instance name?

instantiating module

signal

When one module is instantiated in another, a sig-
nal can be connected to module port by:

« port order (signal),

e port name and
(.port(signal)),

explicit

signal name

« port name only — connecting to the matching
signal name (.port),

« wildcard that matches all remaining matching
port and signal names (.).

The signal name can be an expressions (e.g.
word[15:8]) instead of a signal. Matching of values
to parameters can be done by order (value) or
explicitly, .parameter(value).

The synthesis result, shown above, is as expected.

Arrays of Arrays

We can also declare arrays of arrays. For example,
logic[3:0][7:0] w; declares w as an array of four
arrays of eight bits. A single index selects one of the
bytes, two indices selects a byte and a bit from that
byte:

w
w(3] w(2] w(1] w(0]
w(3](7] w(3](0] w(0](7] w(0](0]

Exercise 3: How would you specify the bit labelled A in the diagram
above? The bits labelled B?

Lookup Tables

Initialized arrays can serve as “lookup tables” - tables
where the index value selects a row. For example, a
lookup table with four three-bit values would be de-
clared as logic [0:3][2:0] t ; and drawn as:

@

~+

~+

~+ ~+
—_—,—, .
_a_a_a_a:

Note that the rows indices are labelled in the conven-
tional order - increasing from top to bottom.

Lookup tables can implement any function by ini-
tializing the rows with the function value for the cor-
responding row index.

For example, the onebits lookup table in the fol-
lowing code contains the number of ‘1’ bits in a bi-
nary number:

logic [0:7][2:0] onebits =
logic [3:0] n ;

'{0,1,1,2,1,2,2,3} ;

assign ... = onebits[n] ;

and the value of the expression onebits[n] is the
number of ‘1’ bits in n.

Exercise 4: Write a Verilog lookup table to look up whether a value
between 0 and 7 is a prime number or not. The result should be 1 if
the value is a prime or else 0. Hint: The primes are 2,3, 5and 7.

Unpacked Arrays

Arrays may also have “unpacked” dimensions that
appear after the signal name and model memories.
For example: 1logic [7:0] rom [32] ; would
model a 32-byte memory with array indices 0 to 31.

In array references, the unpacked dimension(s) (if
any) are specified first, followed by the packed di-
mensions (if any). For example, rom[31][0] would
be the least-significant bit of the last word in the rom
above.

Numbers, Logic Levels and Truth Values

Numbers are used for counting, logic levels are volt-
ages, and truth values can be true or false. These are
different, but related.

Almost universally, 1 and 0 are synonymous with
true and false respectively. But there are two com-
mon conventions for the relationship between logic
levels and truth values:

Active Active
Number | Truth High
. Low
(Verilog)
0 F L H
1 T H L

Verilog uses the active-high convention for inputs
and outputs: @ and 1 are treated as low and high re-
spectively.

But whether 1 or @ indicates that a signal is true or
false depends on the context. In a logical expression,
1 would mean that the signal was true. But as an in-
put or output level 1 could mean that the signal was
true (for active-high signals) or false (for active-low
signals).

Active-low signals can be denoted by:

« a bar over the signal name (reset)
« an asterisk after the signal name (RESET*)

« a suffix of N (or n) after the signal name
(reset_n)

In addition to the two ways to represent truth val-
ues with voltages (active-high and active-low) there
are also two ways to represent binary digits (“bits”)
with voltages. A high voltage may represent either a
0 or a 1. Signals where a 1 is represented by a low
voltage typically, but not always, use active-low no-
tation.

Exercise 5: Is a signal named overload active-high or active-low?

Is there an overload if this signal is high? What if the signal was
named overload?

Exercise 6: Come up with active-high and an active-low names for
asignal that is at 3V when a door is open and 0 V when the door is
closed.

Exercise 7: If D is a data bus and D@ is low, is the value on the data

bus an even or odd number?

A Bit More Syntax

The notations '0 and '1 are convenient abbrevia-
tions for a literal constant that is all-zeros or all-ones.

Ed
Pencil

	Modules
	Arrays of Arrays
	Lookup Tables

	Unpacked Arrays
	Numbers, Logic Levels and Truth Values
	A Bit More Syntax

