
ELEX 2117 : Digital Techniques 2
2022 Winter Term

Ɪntroduction to Digital Design with Verilog HDL

This is a brief introduction to digital circuit design using the SystemVerilogHardwareDescription Language (VerilogHDL).
After this lecture you should be able to:

• define a module with single- and multi-bit logic inputs and outputs;
• write Verilog numeric literals in binary, decimal and hexadecimal bases;
• evaluate the value and length of expressions using logic signals, arrays, numeric literals and the operators described
below;

• draw schematics for Verilog descriptions of multiplexers and registers; and
• use assign statements to design combinational logic and always_ff statements to design registers.

Ɪntroduction

Hardware Description Languages (HDLs) are used to
design digital circuits. In this course we will use Sys-
tem Verilog, the modern version of the Verilog HDL,
rather than the other popular HDL, VHDL.
Let’s start with a simple example – a circuit called

an ex1 that has one output (y) that is the logical AND
of two input signals (a and b). The file ex1.sv con-
tains the following Verilog description:
// AND gate in Verilog

module ex1 (input logic a, b,
output logic y) ;

assign y = a & b ;

endmodule

Some observations on Verilog syntax:

• Everything following // on a line is a comment
and is ignored.

• Module and signal names can contain letters,
digits, underscores (_) and dollar signs ($). The
first character of an identifier must be a letter or
an underscore. They cannot be the same as cer-
tain reserved words (e.g. module).

• Verilog is case-sensitive: a and A would be dif-
ferent signals.

• Statements can be split across any number of
lines. A semicolon ends each statement.

Capitalisation and indentation styles vary. In this
course you will need to follow the coding style guide
available on the course website.

Themodule definition begins by defining the input
and output signals for the device being designed.
The body of themodule contains one ormore state-

ments, each of which operates at the same time – con-
currently. This is the key difference between HDLs
and programming languages – HDLs allows us to de-
fine concurrent behaviour.
The single statement in this example is a signal as-

signment that assigns the value of an expression to
the output signal y. Expressions involving logic sig-
nals canuse the logical operators~ (NOT),& (AND),^
(exclusive-OR), and | (OR). Parentheses can be used
to order the operations.
From this Verilog description a program called a

logic synthesizer (e.g. Intel’s Quartus) can generate a
circuit that has the required functionality. In this case
it’s not too surprising that the result is the following
circuit:

a
y

b
y

If you’re familiar with the C programming language
you’ll note that Verilog uses similar syntax.
Exercise 1: What changes would result in a 3‑input OR gate?
Exercise 2: What schematic would you expect if the statement was
assign y = (a ^ b) | c ;?

Syntax

ReservedWords

System Verilog has about 250 reserved words that
may not be used as module or signal names. Using
one of these (e.g. time, wait, disable, reg, table,

lec1.tex 1 2022-01-11 11:40

input,…) will result in a syntax error. An editor with
syntax highlighting will help you identify and avoid
using reserved words.

logic values

Verilog’s logic signals can have four values: 0 (false
or low), 1 (true or high), z (high impedance) and x
(unknown). z (high-impedance) is used for synthe-
sis of tri-state outputs. x (unknown) is used for an
unknown value.

Arrays

An “array” is group of logic signals whose individ-
ual elements can be selected by a number. Arrays of-
ten represent numerical values in binary form.
The declaration logic [3:0] a; specifies an ar-

ray named a with a ‘width’ of four bits. The bits are
numbered from 3 to 0. a[3] is the leftmost (most sig-
nificant) bit and a[0] is be the rightmost (least sig-
nificant) bit.
Exercise 3: Ɪf the signal i is declared as logic [2:0] i;, what is
the ‘width’ of i? Ɪf i has the value 6 (decimal), what is the value of
i[2]? Of i[0]?

Numeric Literals

Numeric literals, often called “constants”, are written
as a sequence of up to three parts: the number of bits;
one of 'b for binary, 'h for hex, or 'd for decimal; and
the value. The defaultwidth is 32 and the default base
is decimal. Underscores (_) may be used within the
value to improve readability.
Exercise 4: What are the sizes and values, in decimal, of the follow‑
ing: 4'b1001, 5'd3, 6'h0_a, 3?

Expressions

Logic circuits are defined using expressions as shown
above. Operators operate on “operands”: logic sig-
nals, arrays, and numeric literals. Operators with
higher “precedence” are applied before those of lower
precedence. If two operators are of equal prece-
dence they are applied from right to left. Operator
can change the number of bits in an expression (the
“length”) as they’re applied. Values are padded with
zeros on the left when necessary.

Operators

The following sections describe some useful Verilog
operators in order of decreasing precedence.

Slices A range of bits in an array (a “slice”) can be
extracted using a range of “indices” in brackets
([first:last]) after the array name. The bit order
cannot be reversed. The length is the number of
bits in the slice.

Negation Logical negation (!) is zero (0) when ap-
plied to a non-zero operand and one (1) other-
wise. The length is 1 bit.

Bitwise negation (~) inverts the value of each bit.
The length is the width of the operand.

Arithmetic Multiplication (*) , division (/), addi-
tion (+) and subtraction (-) can be applied to ar-
rays. The first two have higher precedence. The
length is the largest of the two operand’s lengths.

Comparison The comparison operators (<, >, <=,
>=, ==, !=) can be applied to arrays. The result
is 1 if the comparison is true and 0 otherwise.
The length is 1 bit.

Bitwise Logical Bitwise logical operators (&, |, ^)
are applied to the corresponding bits in two
operands. The length is the largest of the two
operand’s lengths.

Logical The logical AND operator (&&) has value 1
if both operands are non-zero. The logical OR
operator (||) has value 1 if either operand is
non-zero. The length is 1 bit.
Exercise5: Anarraydeclaredaslogic [15:0] n; andhas
the value 16'h1234.

Whatare thevaluesand lengthsof the followingexpressions?

n[15:13]

!n

~n[3:0]

n + 1'b1

n[7:0] - n[3:0]

n >= 16'h1234

n ^ ~n

n && !n

n * (!n + 1'b1)

2

Conditional Operator Verilog’s conditional oper-
ator is a concise syntax for describing a two-
way multiplexer. The operator consists of three
parts: the condition, the true value and false
value. The result of the operator is the true value
if the condition is non-zero, or the false value
otherwise. The length is the largest of the true
and false value lengths. For example:

assign y = sel ? a : b ⇔
sel

a

b
y

1

0

sets y to a when sel is non-zero and sets y to b
whenever sel is zero.
Exercise 6: What is the value of the expression 3 ? 10 :

20? Of the expression x ? 1 : 0 if x has the value 0? Ɪf x
has the value ‑1?

The following example implements a multi-
plexer that selects from one of two 4-bit inputs:
module ex36 (input logic sel,

input logic [3:0] a, b,
output logic [3:0] y) ;

assign y = sel ? a : b ;

endmodule

which results in:

sel

b[3..0]
y[3..0]

y~[3..0]
0

1
a[3..0]

Conditional operators can be used to concisely
describe trees of multiplexers. In the absence of
parentheses a sequence of ternary operators is
evaluated from left to right.
Exercise 7: Draw the schematics corresponding to:

y = a ? (b ? s1 : s2) : (c ? s3 : s4);

y = a ? s1 : b ? s2 : c ? s3 : s4;

Concatenation The concatenation operator ({,})
combines expressions into a longer value. The
length is the sum of the lengths.
Exercise 8: Use slicing and concatenation to swap the order
of the bytes in n.

What is the value and length of
{n[7:0],n[15:8],4'b1111}?

Use concatenation to shift n left by two bits.

Concatenations of variables can be used on the
left hand side of an assignment.

Assignment Assignments (=, <=) connect the right-
hand side (RHS) expression to the signal on the
left-hand side (LHS). Use = for assign state-
ments and <= for always_ff statements.
The length is the length of the LHS. The left-
most bits are dropped if the RHS is wider than
the LHS.

Registers

The following Verilog:
module ex2 (input logic d, clk,

output logic q) ;

always_ff @(posedge clk)
q <= d ;

endmodule

synthesizes a D-flip-flop that transfers the d input to
the q output on the rising (positive) edge of clk:

d

clk q

q~reg0

D

CLK

SCLR
1'h0

Q

Exercise 9: What would you change to make an 8‑bit register? A
4‑bit counter? A 3‑bit shift register? Follow the course coding con‑
ventions.

3

	Introduction
	Syntax
	Reserved Words
	logic values

	Arrays
	Numeric Literals
	Expressions
	Operators

	Registers

