## Introduction to Digital Design with Verilog HDL

**Exercise 1**: What changes would result in a 3-input OR gate?

Exercise 2: What schematic would you expect if the statement was
assign y = ( a ^ b ) | c ;?



**Exercise 3**: If the signal i is declared as logic [2:0] i;, what is the 'width' of i? If i has the value 6 (decimal), what is the value of i[2]? Of i[0]? **2 I D** 



**Exercise 4**: What are the sizes and values, in decimal, of the following: 4'b1001, 5'd3, 6'h0\_a, 3?

|          | 1 2 - 2 + 4 | Value |
|----------|-------------|-------|
| 4 6 1001 | Ч           | ງ     |
|          | 5           | 3     |
| 5 d 3    | G           | 10    |
| 6'ho_a   | 6           | 7     |
| 5        | 32          | 5     |

**Exercise 5**: An array declared as logic [15:0] n; and has the value 16'h1234.



**Exercise 6**: What is the value of the expression 3? 10 : 20? Of the expression x ? 1 : 0 if x has the value 0? If x has the value -1?



**Exercise 7**: Draw the schematics corresponding to:

| y = a ? | (b?s1                 | : s2 ):         | (c?s3:   | s4 <b>)</b> ; |
|---------|-----------------------|-----------------|----------|---------------|
| y = a ? | s1 : 1 <sup>b ?</sup> | s2 : <u>c</u> ? | s3 : s4; |               |
|         |                       |                 |          |               |





**Exercise 8**: Use slicing and concatenation to swap the order of the bytes in n.

What is the value and length of  $\{n[7:0], n[15:8], 4'b1111\}$ ? Use concatenation to shift n left by two bits 15 N = |6'h| 234Swap by les:  $\{h[7:0], n[15:8]\}$  $\{0011 0100 0001 0010 1111\}$ ? Value: 20'h 3912f longth = 16+4 = 200 bits.

**Exercise 9**: What would you change to make an 8-bit register? A 4-bit counter? A 3-bit shift register? Follow the course coding conventions.