
ELEX 2117 : Digital Techniques 2
2022 Winter Term

Asynchronous Serial Ɪnterface Receiver

Ɪntroduction

An Asynchronous Serial Interface is a low-speed se-
rial communication interface mostly used by embed-
ded devices. The simplest version uses a single data
line in each direction (Transmit Data and Receive
Data) and a ground pin. The RS-232 standard speci-
fies levels of at least ±5 volts but embedded systems
often use logic-level signals.
In this lab you will design and implement the re-

ceiver of a UART (Universal Asynchronous Receiver-
Transmitter) that receives an 8-bit value.
The receiver module will be connected to the LED

display and will show the received values as two two-
digit hexadecimal values.
You will test your UARTmodule by transmitting it

a string ending with the last two characters of your
BCIT ID. The values transmitted will be the ASCII 1
character codes for these characters.
You will use the Analog Discovery 2 (AD2)

“UART” protocol analyzer function to generate these
test waveforms.
The supplied lab6b.qar Quartus project archive

contains the required code except for the code in the
receiver module in the receiver.sv file, which
you must write.

Specifications

The diagram below shows the asynchronous serial
interface waveform output by the AD2 for the value
8'b0101_0011 (8’h53) at 9600 bits per second:

 15.8 ms =
152 clock cycles

d0 d7d1 d6

stop
 bit

start
 bit

16 clock
 cycles

1An encoding is a mapping of characters (“glyphs”) to num-
bers. Unicode is the most widely used. ASCII, American Code
for Information Interchange, is a subset of Unicode that covers
only English-language characters and numbers.

Eight bits per character must be received in order
from least-significant bit to most-significant bit. A
high logic level should be received as a “1” bit and
a low logic level as a “0”. An extra “0” (“start bit”)
is transmitted before the data bits and an extra “1”
(“stop bit”) is transmitted after the data bits. The sig-
nal is high between characters.
Note that this signal is inverted from the conven-

tions used by RS-232 in which a “1” is transmitted as
a negative voltage and a “0” as a positive one.
The inputs and outputs of your receivermodule

are shown below:

rxd

clk

valid

data

led

receiver

8

valid should be asserted for one clock period when
the value of the data output is the eight bits of the
most recently received character. The led is for trou-
bleshooting and can be set to anything. rxd is the
serial data and clk is a clock at approximately 16 ×
9600 = 153.6 kHz.

Design Suggestion

As described in the lecture notes, a shift register is a
common implementation for the datapath of a serial
interface. A state machine controls this shift register.
The suggested controller for an asynchronous se-

rial interface uses a counter. The count value is ini-
tialized at the start of the start bit and counts down
until the middle of the stop bit (at which point the re-
ceiver would wait for the next start bit). This receiver
is active for the duration of the start bit, the data bits
and the first half of the stop bit. This requires that the
counter count down for𝑚(𝑛+1.5) clock cycles where
𝑛 is the number of data bits and 𝑚 is the number of
clock cycles per bit. The extra 1.5 bit periods include
the start bit and half of the stop bit durations.
The received data is shifted into a data shift reg-

ister in the middle of the each bit, including the

lab6b.tex 1 2022-03-01 03:43

https://en.wikipedia.org/wiki/Asynchronous_serial_communication
https://en.wikipedia.org/wiki/ASCII

Figure 1: AD2 Protocol Analyzer Window.

receiver:r0

clk

rxd

led

valid

data[7..0]

b

clkdiv:c0

clk_in clk

clkdiv:c1

clk_in clk

clk50

c

digits[0][3..0]

D

CLK

ENA

SCLR
4'h0

Q

digits[1][3..0]

D

CLK

ENA

SCLR
4'h0

Q

digits[2][3..0]

D

CLK

ENA

SCLR
4'h0

Q

digits[3][3..0]

D

CLK

ENA

SCLR
4'h0

Q

display:d0

clk

digits[0][3..0]

digits[1][3..0]

digits[2][3..0]

digits[3][3..0]

a

b

c

d

e

f

g

en[3..0]
d

en[3..0]

e

f

g

ledrxd

+

Add0CIN1'h0

A[8..0]

B[8..0]9'h1fd

OUT[8..0]

=

Equal0
A[7..0]

B[7..0]8'h10
OUT

WideNor0

WideNor1

WideOr0
count[7..0]

D

CLK

SCLR
8'h0

Q

count~[8..1]
0

18'h19

count~[16..9]
0

1

count~0

data[0]~reg[7..0]

D

CLK

ENA

SCLR
8'h0

Q

last

D

CLK

SCLR
1'h0

Q

led~not

valid~reg0

D

CLK

SCLR
1'h0

Q

a

7:4

3:0

7:
1

7:
0

0
1
2
3
4
5
6
7

0

1

2

3

0
1
2
3
4
5
6
7

Figure 2: “RTL Netlist” Schematic.

start bit. This requires waiting 𝑚/2 clock cycles un-
til the middle of the start bit and then waiting 𝑚
clock bits for subsequent bits. As an example, for
𝑛 = 8 data bits and a clock frequency of 𝑚 = 16
times the bit rate the counterwould count down from
16(8+1.5) = 152 =8'h98 to zero. Bits are shifted into
the shift register when the counter reaches 152−8 =
144 =8'h90, 144 − 16 = 128 =8'h80, etc.
Note that the least-significant four bits of all of the

above values are 4'h0. The controller can load the
counter with the initial value when a falling edge is
detected and decrement it by 1 on each clock cycle
while it’s not zero. The shift register shifts in a new
bit whenever the least-significant four bits are zero.
The ’valid’ output is true for one clock cycle after

the final data bit has been shifted in (which happens
when the count reaches 8'h10).
Your designwill also need to detect the falling edge

at the start of the start bit. The counter value should
be set to the starting value if the count value is zero
and a falling edge is detected.
The implementation of the datapath is an 𝑛 = 8-

bit register. The value on the data input is shifted into
the most significant bit at the appropriate count val-
ues. This results in the first bit ending up in the least-
significant bit position (the start bit is shifted out).

CPLD Ɪ/O

2

The default pin assignments for this lab useCPLDpin
26 for the data signal from the AD2 (rxd). The pin to
the left of pin 26 is a ground and should be connected
to one of the AD2’s black ground leads. You can con-
nect the ’scope to pin 77 (led) for troubleshooting.

The four-digit LED display is connected as in pre-
vious labs.

Use of AD2

You will use the AD2 protocol analyzer window to
generate the test waveform. You can also use the
’scope window to troubleshoot the operation of your
design by monitoring the led signal.
Figure 1 shows the AD2 protocol analyzer con-

figured to transmit the characters for BCIT ID
A00123456with no line ending character, at 9600 bits
per second, with one stop bit, 8 bits per character,
with the output on lead DIO0.

Note: There may be a conflict between Quartus
Programmer and the AD2 Waveforms software.
Youmay have to useWaveforms> Settings >De-
vice Manager and temporarily switch to one of
the Demo modes to allow the Quartus Program-
mer to access the USB Blaster.

Procedure

Download the lab6.qar Quartus archive and open
it with Quartus. Restore it to a convenient directory.
Edit the included receiver.sv to implement a de-
sign that meets the specifications above. Connect the

CPLD to the 4-digit LED display as in previous labs.
Program the CPLD. Connect the CPLD to the AD2 as
shown above. Run the Waveforms software and con-
figure the “Protocol” window as shown above but us-
ing your BCIT ID. Press the Send button to sent the
data to the CPLD. You should see the ASCII values
of the last two characters displayed in hexadecimal.
For example, if you BCIT ID ends with 56, the ASCII
character codes for the digits ’5’ and ’6’ are 8'h35 and
8'h36 and so the display would show 3536.
You can use the .pof file on the course web site to

check your hardware and AD2 configuration. How-
ever, note that this configuration displays the hex val-
ues of the least-significant four bits of themost recent
four characters received.

Submission

To get credit for completing this lab, submit a PDF
document containing the following to the Assign-
ment folder for this lab on the course website:

1. A listing of your receiver.sv System Verilog
file.

2. The RTL schematic (Tools> RTL Netlist) with the
receiver module expanded. This will be similar
to Figure 2.

3. A screen capture of your compilation report sim-
ilar to:

.

If you do not demonstrate your lab in person, also
submit a video showing the initial change to the hex
values when you send the last two digits of your BCIT
ID.

3

	Introduction
	Specifications
	Design Suggestion
	CPLD I/O
	Use of AD2
	Procedure
	Submission

