
ELEX 2117 : Digital Techniques 2
2022 Winter Term

Hierarchical Design

Revision 2: Added RTL netlist schematic and corrected Figure 1.

Ɪntroduction

In this lab you’ll practice instantiating modules by
building a digital combination lock. You’ll be sup-
plied five modules. You’ll also design a sequence de-
tector based on a resetable 4-digit shift register.

Components

You will need the CPLD board, the four-digit 7-
segment LED display and the 4×4 matrix keypad
used in previous labs.

Requirements

Each press of a key should shift that digit into the 4-
digit 7-segment LED display from the right. The red
LED on the CPLD board should be on only when the
display shows the last four digits of yourBCIT ID (this
shows when the lock is open). Pressing the

�� ��* key
should reset the display to 0000 and close the lock
(turn off the LED).
Your design must instantiate the modules de-

scribed below.

Module Descriptions

You will be supplied with a file, lab5modules.sv
containing definitions of the following modules.

keypad This module outputs a 4-bit binary value,
digit, corresponding to the key that is being
pressed. Keys

�� ��A through
�� ��D output their hex-

adecimal values,
�� ��* outputs value 14 (hex E)

and
�� ��# outputs 15 (hex F). The valid output

is true when the value of digit is valid. digit
should be ignored otherwise.

module keypad // 4x4 matrix keypad decoder
(output logic [3:0] row,// matrix row output
input logic [3:0] col, // matrix column input
input logic clk, // clock
output logic [3:0] digit, // value of key
output logic valid) ; // high if digit is valid

display The 4-digit LED display displays the four 4-
bit digits on the input digits.

module display // 4−digit 7−segment display
(input logic [3:0][3:0] digits, // digits L−to−R
input logic clk, // clock
output logic [3:0] en, // active−low enables
output logic a, b, c, d,

e, f, g) ; // active−high segments

clkdiv The clock divider generates a square-wave
clock. It has parameters for the input and out-
put frequency.

module clkdiv // clock divider
#(fin = 50000000, // input frequency

fout = 200) // output frequency
(input logic clk_in, // input clock
output logic clk); // clock out (50%)

debounce The switch debouncer outputs the input
value, sw_in on the output sw, when the input
has been stable for parameter N clock cycles.

module debounce // switch debouncer
#(parameter N=16'hffff, // delay (clocks)
w=1) // switch width
(input logic [w-1:0] sw_in, // switch input
input logic clk, // clock
output logic [w-1:0] sw) ; // switch output

rising The rising-edge detector sets out high for one
clock cycle when the input transitions from low
to high between rising edges of the clock.

module rising // rising−edge detector
(input logic in, clk, // input & clock
output logic out) ; // high one clock on edge

Suggested Solution

The diagram in Figure 1 shows a possible solution.
You’ll need to design the logic in the block marked

“shift register and sequence detector.” This is a 4-
element 4-bit shift register that shifts the digit from
the keyboard module into a shift register when the
debounced valid signal indicates a new digit. It also
resets the shift register to zero (16'h0000) if

�� ��* is
pressed (decimal value 14).

lab5.tex 1 2022-02-14 08:15

keypad

col

clk

row

digit

valid
sw_in

clk

sw

debounce rising

in

clk

outclk_in

clk

display

clk

en

a,b,...,g

digits

a,b,...,g

enclkdiv

row

led

clk50

col
shift register
 and
 sequence
 detector

4

4

4

416

a b c

d

Figure 1: Example solution schematic.

Use the clk signal as a clock. Do not use the out-
puts of the rising or debouncemodules as a clock.
You’ll need to set the parameters of the clkdiv

(e.g. fout=2000 Hz) and debounce (e.g. N=20,
10 ms).

Procedure

Create a project as in previous labs. Download the
lab5modules.sv file from the course web site and
add it to your project. Pin assignments can be im-
ported from previous labs that used the keypad and
LED display if you are using the same pins. Remem-
ber to enable the pull-ups on the col inputs.
Create a lab5.sv file containing a module (e.g.

lab5) that has the necessary inputs and outputs as
shown in the diagram and described in previous labs.
Your module should also instantiate the modules de-
scribed above and declare the signals you’ll need to
connect the modules (those labelled a through d in
the diagram – but use your own names). You’ll need
to add some code to implement the shift register and
to turn on the ledwhen the shift register has the cor-
rect combination (the last four digits of your BCIT
ID).
Program the CPLD and connect it to the keypad

and LEDdisplay as in previous labs. Test your design.

Submission

To get credit for completing this lab, submit the fol-
lowing to the Assignment folder for this lab on the
course website:

1. A PDF document containing:

• A Verilog listing of your design (e.g.
lab5.sv). Do not include a listing of
lab5modules.sv.

• A screen capture of your compilation re-
port as in previous labs.

• The schematic created by Tools > Netlist
Viewers > RTL Viewer and using File > Ex-
port... It may look like Figure 2.

2. If you do not demonstrate your design in the lab,
a video of the display, keypad and CPLD board
showing:

• the display being reset to all-zeros when�� ��* is pressed
• entering the last four digits of your BCIT
ID and the LED lighting when the correct
digits are entered

• the display being reset to all-zeros when�� ��* is pressed

• entering in
�� ��3

�� ��4
�� ��5

�� ��6 and showing that
the LED does not light

A sample video is available on the course website.

2

clk50

col[3..0]

clkdiv:c0

clk_in clk

keypad:k0

clk

col[3..0]

valid

row[3..0]

digit[3..0]

debounce:db0

clk

sw_in[0..0]

sw[0..0]

rising:r0

in

clk out

digits[1][3..0]

D

CLK

ENA

SCLR
4'h0

Q

digits[2][3..0]

D

CLK

ENA

SCLR
4'h0

Q

=

Equal0
A[3..0]

B[3..0]4'he
OUT

digits~[15..0]
0

116'h0

digits[0][3..0]

D

CLK

ENA

SCLR
4'h0

Q

digits[3][3..0]

D

CLK

ENA

SCLR
4'h0

Q

=

Equal1
A[15..0]

B[15..0]16'h3456
OUT

display:d0

clk

digits[0][3..0]

digits[1][3..0]

digits[2][3..0]

digits[3][3..0]

a

b

c

d

e

f

g

en[3..0]

led

row[3..0]

a

b

c

d

en[3..0]

e

f

g

0:
3

3:
00:

3

3:
00:

3

3:
0

3:
0

8:11

4:7

12:15

0:3

0:
3

Figure 2: Example RTL Netlist output.

3

	Introduction
	Components
	Requirements
	Module Descriptions
	Suggested Solution
	Procedure
	Submission

